
(Implementation Details of Ruby 2.0 VM).succ

笹田 耕一
Koichi Sasada

1

ko1@atdot.net
@koichisasada

(“Implementation Details of Ruby 2.0 VM”).succ
#=> "Implementation Details of Ruby 2.0 VN"

笹田 耕一
Koichi Sasada

2

ko1@atdot.net
@koichisasada

(Implementation Details of Ruby 2.0 VM).succ

!=
Ruby 2.0 sucks

3

笹田 耕一
Koichi Sasada

ko1@atdot.net
@koichisasada

(Implementation Details of Ruby 2.0 VM).succ

==
Ruby 2.0 Rocks!

4

笹田 耕一
Koichi Sasada

ko1@atdot.net
@koichisasada

Disclaimer

• (As you can see) I can

 speak English little.

• Ask me an questions in 日本語 Japanese
(WELCOME!), Ruby or SLOW English

• All of I want to say is on the screen. You
can read them.

5

http://www.flickr.com/photos/andosteinmetz/2901325908/

Who am I ?

• 笹田耕一 (Koichi Sasada)

– Matz team at Heroku, Inc.

• Full-time CRuby development

– CRuby/MRI committer

• Virtual machine (YARV) from Ruby 1.9

• YARV development since 2004/1/1

– 2.0 Release manager assistant

• Organizing feature request

• Many mails to ruby-core/ruby-dev

6

7

ko1 @ Tokyo
me

Nobu @ Tochigi
Drunker

Matz @ Shimane
Boss

Communication
with Skype

Matz team at Heroku, Inc.

8

0

10

20

30

40

50

60

70

80

90

Commit number/day of Ruby's trunk

total

9

0

10

20

30

40

50

60

70

80

90

Commit number/day of Ruby's trunk

total

matz

10

0

10

20

30

40

50

60

70

80

90

Commit number/day of Ruby's trunk

total

matz

ko1

11

0

10

20

30

40

50

60

70

80

90

Commit number/day of Ruby's trunk

total

matz

ko1

nobu

Today’s topics

• Ruby 2.0 Features

• Ruby 2.0 Optimizations – Method dispatch

• After Ruby 2.0

12

Ruby 2.0

20th Anniversary Release

of Ruby language

will be release at

2013/02/24

(Fixed)

ADD (Anniversary Driven Development)
13

Ruby 2.0 Release policy

• Compatibility (Ruby level)

• Compatibility (Ruby level)

• Compatibility (Ruby level)

• Usability

• Performance

14

Ruby 2.0 Roadmap

2012/Aug
“Big-feature” freeze
(was ignored)

2013/2/24
Ruby 2.0 Release
(20th anniversary)

2012/Oct
Feature freeze

“[ruby-core:40301] A rough release schedule for 2.0.0”
and Endo-san’s (release manager) leak 15

2012/Nov
Preview1

2012/Dec
X’mas

Code freeze

Only about *few weeks*
to introduce new codes

2012/Dec
Now

Preview2
2013/Jan

RC1

2013/Feb
RC2

Introduction of Ruby 2.0 features

What features are introduced?

16

-*- rdoc -*-

= NEWS for Ruby 2.0.0

This document is a list of user
visible feature changes made
between

releases except for bug fixes.

Note that each entry is kept so
brief that no reason behind or

reference information is
supplied with. For a full list of
changes

with all sufficient information,
see the ChangeLog file.

== Changes since the 1.9.3
release

=== C API updates

* NUM2SHORT() and
NUM2USHORT() added. They
are similar to NUM2INT, but
short.

* rb_newobj_of() and
NEWOBJ_OF() added. They
create a new object of a given
class.

=== Library updates
(outstanding ones only)

* builtin classes

 * Array

 * added method:

 * added Array#bsearch for
binary search.

 * incompatible changes:

 * random parameter of
Array#shuffle! and
Array#sample now

 will be called with one
argument, maximum value.

 * when given Range
arguments, Array#values_at
now returns nil for each

 value that is out-of-range.

 * Enumerable

 * added method:

 * added Enumerable#lazy
method for lazy enumeration.

 * Enumerator

 * added method:

 * added Enumerator#size
for lazy size evaluation.

 * extended method:

 * Enumerator.new accept
an argument for lazy size
evaluation.

 * ENV

 * aliased method:

 * ENV.to_h is a new alias
for ENV.to_hash

 * Fiber

 * incompatible changes:

 * Fiber#resume cannot
resume a fiber which invokes

"Fiber#transfer".

 * File

 * extended method:

 * File.fnmatch? now
expands braces in the pattern
if

 File::FNM_EXTGLOB
option is given.

 * GC

 * improvements:

 * introduced the bitmap
marking which suppresses to
copy a memory page

 with Copy-on-Write.

 * introduced the non-
recursive marking which
avoids unexpected stack
overflow.

 * GC::Profiler

 * added method:

 * added
GC::Profiler.raw_data which
returns raw profile data for GC.

 * Hash

 * added method:

 * added Hash#to_h as
explicit conversion method,
like Array#to_a.

 * extended method:

 * Hash#default_proc= can
be passed nil to clear the
default proc.

 * Kernel

 * added method:

 * added Kernel#Hash
conversion method like Array()
or Float().

 * added Kernel#using,
which imports refinements
into the current scope.

 [experimental]

 * added Kernel#__dir__
which returns a current
dirname.

 * added
Kernel#caller_locations which
returns an array of

 frame information objects.

 * extended method:

 * Kernel#warn accepts
multiple args in like puts.

 * Kernel#caller accepts
second optional argument ̀ n'
which specify

 required caller size.

 * Kernel#to_enum and
enum_for accept a block for
lazy size evaluation.

 * incompatible changes:

 * system() and exec()
closes non-standard file
descriptors

 (The default
of :close_others option is
changed to true by default.)

 * respond_to? against a
protected method now
returns false unless

 the second argument is
true.

 * __callee__ has returned
to the original behavior, and
now

 returns the called name
but not the original name in an

 aliased method.

 * Kernel#inspect does not
call #to_s anymore

 (it used to call redefined
#to_s).

 * LoadError

 * added method:

 * added LoadError#path
method to return the file
name that could not be

 loaded.

 * Module

 * added method:

 * added Module#prepend
which is similar to
Module#include,

 however a method in the
prepended module overrides
the

 corresponding method in
the prepending module.

 * added Module#refine,
which extends a class or
module locally.

 [experimental]

 * added
Module#refinements, which
returns refinements defined in
the

 receiver. [experimental]

 * added Module#using,
which imports refinements
into the receiver.

 [experimental]

 * extended method:

 * Module#define_method
accepts a UnboundMethod
from a Module.

 * Module#const_get
accepts a qualified constant
string, e.g.

Object.const_get("Foo::Bar::B
az")

 * Mutex

 * added method:

 * added Mutex#owned?
which returns the mutex is
held by current

 thread or not.
[experimental]

 * incompatible changes:

 * Mutex#lock,
Mutex#unlock,
Mutex#try_lock,
Mutex#synchronize

 and Mutex#sleep are no
longer allowed to be used
from trap handler

 and raise a ThreadError in
such case.

 * Mutex#sleep may
spurious wakeup. Check after
wakeup.

 * NilClass

 * added method:

 * added nil.to_h which
returns {}

 * Process

 * added method:

 * added getsid for getting
session id (unix only).

 * Range

 * added method:

 * added Range#size for lazy
size evaluation.

 * added Range#bsearch for
binary search.

 * Signal

 * added method:

 * added Signal.signame
which returns signal name

 * incompatible changes:

 * Signal.trap raises
ArgumentError
when :SEGV, :BUS, :ILL, :FPE, :
VTALRM

 are specified.

 * String

 * added method:

 * added String#b returning
a copied string whose
encoding is ASCII-8BIT.

 * change return value:

 * String#lines now returns
an array instead of an
enumerator.

 * String#chars now returns
an array instead of an
enumerator.

 * String#codepoints now
returns an array instead of an
enumerator.

 * String#bytes now returns
an array instead of an
enumerator.

 * Struct

 * added method:

 * added Struct#to_h
returning values with keys
corresponding to the

 instance variable names.

 * Thread

 * added method:

 * added
Thread#thread_variable_get
for getting thread local
variables

 (these are different than
Fiber local variables).

 * added
Thread#thread_variable_set
for setting thread local
variables.

 * added
Thread#thread_variables for
getting a list of the thread
local

 variable keys.

 * added
Thread#thread_variable? for
testing to see if a particular
thread

 variable has been set.

 * added
Thread#backtrace_locations
which returns similar
information of

 Kernel#caller_locations.

 * incompatible changes:

 * Thread#join and
Thread#value now raises a
ThreadError if target thread

 is the current or main
thread.

 * Time

 * change return value:

 * Time#to_s returned
encoding defaults to US-ASCII
but automatically

 transcodes to
Encoding.default_internal if it
is set.

 * TracePoint

 * new class. This class is
replacement of set_trace_func.

 Easy to use and efficient
implementation.

 * toplevel

 * added method:

 * added
main.define_method which
defines a global function.

* cgi

 * Add HTML5 tag maker.

 * CGI#header has been
renamed to CGI#http_header
and

 aliased to CGI#header.

 * When HTML5 tagmaker
called, overwrite CGI#header,

 CGI#header function is to
create a <header> element.

* iconv

 * Iconv has been removed.
Use String#encode instead.

* io/wait

 * new features:

 * added IO#wait_writable
method.

 * added IO#wait_readable
method as alias of IO#wait.

* net/http

 * new features:

 * Proxies are now
automatically detected from
the http_proxy environment

 variable. See
Net::HTTP::new for details.

 * gzip and deflate
compression are now
requested for all requests by

 default. See Net::HTTP for
details.

 * SSL sessions are now
reused across connections for
a single instance.

 This speeds up connection
by using a previously
negotiated session.

 * new methods:

 * Net::HTTP#local_host

 * Net::HTTP#local_host=

 * Net::HTTP#local_port

 * Net::HTTP#local_port=

 * extended method:

 * Net::HTTP#connect uses
local_host and local_port if
specified.

* net/imap

 * new methods:

 * Net::IMAP.default_port

 *
Net::IMAP.default_imap_port

 *
Net::IMAP.default_tls_port

 *
Net::IMAP.default_ssl_port

 *
Net::IMAP.default_imaps_port

* objspace

 * new method:

 *
ObjectSpace.reachable_object
s_from(obj)

* openssl

 * Consistently raise an error
when trying to encode nil
values. All instances

 of OpenSSL::ASN1::Primitive
now raise TypeError when
calling to_der on an

 instance whose value is nil.
All instances of
OpenSSL::ASN1::Constructive

 raise NoMethodError in the
same case. Constructing such
values is still

 permitted.

 * TLS 1.1 & 1.2 support by
setting
OpenSSL::SSL::SSLContext#ssl_
version to

 :TLSv1_2, :TLSv1_2_server, :
TLSv1_2_client
or :TLSv1_1, :TLSv1_1_server

 :TLSv1_1_client. The version
being effectively used can be
queried

 with
OpenSSL::SSL#ssl_version.
Furthermore, it is also possible
to

 blacklist the new TLS
versions with
OpenSSL::SSL:OP_NO_TLSv1_1
and

OpenSSL::SSL::OP_NO_TLSv1_
2.

 * Added
OpenSSL::SSL::SSLContext#ren
egotiation_cb. A user-defined
callback

 may be set which gets called
whenever a new handshake is
negotiated. This

 also allows to
programmatically decline
(client) renegotiation attempts.

 * Support for "0/n" splitting
of records as BEAST mitigation
via

OpenSSL::SSL::OP_DONT_INSE
RT_EMPTY_FRAGMENTS.

 * OpenSSL requires
passwords for decrypting
PEM-encoded files to be at
least

 four characters long. This
led to awkward situations
where an export with

 a password with fewer than
four characters was possible,
but accessing the

 file afterwards failed.
OpenSSL::PKey::RSA,
OpenSSL::PKey::DSA and

 OpenSSL::PKey::EC
therefore now enforce the
same check when exporting a

 private key to PEM with a
password - it has to be at least
four characters

 long.

 * SSL/TLS support for the
Next Protocol Negotiation
extension. Supported

 with OpenSSL 1.0.1 and
higher.

 * OpenSSL::OPENSSL_FIPS
allows client applications to
detect whether OpenSSL

 is running in FIPS mode and
to react to the special
requirements this

 might impy.

* ostruct

 * new methods:

 * OpenStruct#[], []=

 * OpenStruct#each_pair

 * OpenStruct#eql?

 * OpenStruct#hash

 * OpenStruct#to_h converts
the struct to a hash.

 * extended method:

 * OpenStruct.new also
accepts an OpenStruct / Struct.

* pathname

 * extended method:

 * Pathname#find returns an
enumerator if no block is given.

* rake

 * rake has been updated to
version 0.9.5.

 This version is backwards-
compatible with previous rake
versions and

 contains many bug fixes.

 See

http://rake.rubyforge.org/doc/
release_notes/rake-
0_9_5_rdoc.html for a list

 of changes in rake 0.9.3,
0.9.4 and 0.9.5.

* rdoc

 * rdoc has been updated to
version 4.0

 This version is largely
backwards-compatible with
previous rdoc versions.

 The most notable change is
an update to the ri data format
(ri data must

 be regenerated for gems
shared across rdoc versions).
Further API changes

 are internal and won't affect
most users.

 See
https://github.com/rdoc/rdoc/
blob/master/History.rdoc for a
list of

 changes in rdoc 4.0.

* resolv

 * new methods:

 * Resolv::DNS#timeouts=

 *
Resolv::DNS::Config#timeouts
=

* rexml

 * REXML::Document#write
supports Hash arguments.

 * REXML::Document#write
supports new :encoding
option. It changes

 XML document encoding.
Without :encoding option,
encoding in

 XML declaration is used for
XML document encoding.

* RubyGems

 * Updated to 2.0.0.preview2

 RubyGems 2.0.0 features
the following improvements:

 * Improved support for
default gems shipping with
ruby 2.0.0+

 * A gem can have arbitrary
metadata through
Gem::Specification#metadata

 * `gem search` now defaults
to --remote and is anchored
like gem list.

 * Added --document to
replace --rdoc and --ri. Use --
no-document to

 disable documentation, --
document=rdoc to only
generate rdoc.

 * Only ri-format
documentation is generated
by default.

 * `gem server` uses
RDoc::Servlet from RDoc 4.0 to
generate HTML

 documentation.

 For an expanded list of
updates and bug fixes see:

https://github.com/rubygems/
rubygems/blob/master/Histor
y.txt

* shellwords

 * Shellwords#shellescape()

now stringifies the given
object using to_s.

 * Shellwords#shelljoin()
accepts non-string objects in
the given

 array, each of which is
stringified using to_s.

* syslog

 * Added Syslog::Logger which
provides a Logger API atop
Syslog.

 * Syslog::Priority,
Syslog::Level, Syslog::Option
and Syslog::Macros

 are introduced for easy
detection of available
constants on a

 running system.

* tmpdir

 * incompatible changes:

 * Dir.mktmpdir uses
FileUtils.remove_entry instead
of

FileUtils.remove_entry_secure.
This means that applications
should not

 change the permission of
the created temporary
directory to make

 accessible from other users.

* yaml

 * Syck has been removed.
YAML now completely
depends on libyaml being

 installed.

* zlib

 * Added streaming support
for Zlib::Inflate and
Zlib::Deflate. This allows

 processing of a stream
without the use of large
amounts of memory.

 * Added support for the new
deflate strategies Zlib::RLE and
Zlib::FIXED.

 * Zlib streams are now
processed without the GVL.
This allows gzip, zlib and

 deflate streams to be
processed in parallel.

=== Language changes

 * Added %i and %I for symbol
list creation (similar to %w
and %W).

 * Default source encoding is
changed to UTF-8. (was US-
ASCII)

=== Compatibility issues
(excluding feature bug fixes)

 * Array#values_at

 See above.

 * String#lines

 * String#chars

 * String#codepoints

 * String#bytes

 These methods no longer
return an Enumerator,
although passing a

 block is still supported for
backwards compatibility.

 Code like
str.lines.with_index(1) { |line,
lineno| ... } no longer

 works because str.lines
returns an array. Replace lines
with

 each_line in such cases.

 * Signal.trap

 See above.

 * Merge Onigmo.

 https://github.com/k-
takata/Onigmo

 * The :close_others option is
true by default for system()
and exec().

 Also, the close-on-exec flag
is set by default for all new file
descriptors.

 This means file descriptors
doesn't inherit to spawned
process unless

 explicitly requested such as
system(..., fd=>fd).

 * Kernel#respond_to?
against a protected method
now returns false

 unless the second argument
is true.

 * Dir.mktmpdir in
lib/tmpdir.rb

 See above.

 * OpenStruct new methods
can conflict with custom
attributes named

 "each_pair", "eql?", "hash"
or "to_h".

 * Thread#join, Thread#value

 See above.

 * Mutex#lock, Mutex#unlock,
Mutex#try_lock,
Mutex#synchronize and
Mutex#sleep

 See above.

You can read them

at NEWS file

17
Doubled from Nov/2012

Ruby 2.0 Main features

• Traces
– TracePoint

– DTrace

• Inspection
– caller_locations

– debug_inspector API

• Memory inspection
– ObjectSpace.reachable_objects_from(obj)

– GC.stat[:total_allocated_object]

18

Internal
Inspection

Ruby 2.0 introduces
huge inspection support

Internal Inspection features

• Generally, you don’t need to use these
inspection features

• If you got a trouble, please remember
inspection features

Nobody knows, so I
introduce them today

19

TracePoint

• OO designed set_trace_func

• Usage
 # old style

 set_trace_func(lambda{|ev,file,line,id,klass,binding|

 puts “#{ev} #{file}:#{line}”

 }

 # new style with TracePoint

 trace = TracePoint.trace{|tp|

 # access event info by methods

 puts “#{tp.event}, #{tp.path}:#{tp.line}”

 }

20

TracePoint
Flexible on/off

trace = TracePoint.new{...}

trace.enable do

 ... # enable trace only in this block

end

trace.enabe # enable trace after this point

trace.disalbe{

 ... # disable trace only in this block

}

21

TracePoint
Events

• Same as set_trace_func

– line

– call/return, c_call/c_return

– class/end

– raise

• New events (only for TracePoint)

– thread_begin/thread_end

– b_call/b_end

22

TracePoint
Filtering events

• TracePoint.new(events) only hook “events”

 TracePoint.trace(:call, :return){...}

 ...

23

TracePoint
Event info

• Same as set_trace_func

– event

– path, lineno

– defined_class, method_id

– binding

• New event info

– return_value (only for retun, c_return, b_return)

– raised_exception (only for raise)

24

TracePoint
Advantages

• Advantage of TracePoint compared with
set_trace_func

– OO style

– On/Off

– Lightweight

• Creating binding object each time is too costly

– Event filtering

25

DTrace

• Solaris, MacOSX FreeBSD and Linux has DTrace
tracing features

• Ruby interpreter support some events

• See https://bugs.ruby-
lang.org/projects/ruby/wiki/DTraceProbes
– Not stable. Be careful this probe spec can be

changed before and after Ruby 2.0 release.

Skip this section because I’m not an expert.

26

https://bugs.ruby-lang.org/projects/ruby/wiki/DTraceProbes
https://bugs.ruby-lang.org/projects/ruby/wiki/DTraceProbes
https://bugs.ruby-lang.org/projects/ruby/wiki/DTraceProbes
https://bugs.ruby-lang.org/projects/ruby/wiki/DTraceProbes

caller_locations

• caller() returns Backtrace strings array.
– like ["t.rb:1:in `<main>'"]

• caller_locations() retuns OO style backtrace
information
– caller_locations(0).each{|loc|

 p "#{loc.path}:#{loc.lineno}“}

– No need to parse Backtrace string!

• [advanced] caller and caller_locations support
range and 2nd argument like Array#[] to specify
how many backtrace information are needed

27

Debug inspection API

• Returns all bindings of current stack

– Provided as C API

– Debugger can use them

28

Memory inspection
ObjectSpace.reachable_objects_from
• ObjectSpace.reachable_objects_from(obj)

returns reachable objects

– Examples:

(1) When obj is [“a”, “b”, “c”], returns [Array, “a”, “b”, “c”]

(2) When obj is [“a”, “a”], returns [Array, “a”, “a”]

(3) When obj is [a = “a”, a], returns [Array, “a”]

29

array
obj

Array

“a”

array
obj

Array

“a”

“a”

(2)
(3) array

obj Array

“c” “b”

(1)

“a”

Memory inspection
ObjectSpace.reachable_objects_from

• You can analyze memory leak. ... Maybe.

• Combination with ObjectSpace.memsize_of()
(introduced at 1.9) is also helpful to calculate
how many memories consumed by obj.

30

array
obj

Array

“a”
“a”

12 byte

1 byte

1 byte

Total 14 bytes
(this is fake example)

DEMO

Memory inspection

GC.stat[:total_allocated_object]

• GC.stat returns implementation dependent GC
(memory) usage by hash

– :count means how many GC occurs

• From 2.0, two information are added

• :total_allocated_object
• How many objects are allocated since interpreter launched

• :total_freeed_object
• How many objects are freed by GC.

– Note that these numbers can be overflow.

31

Desirable behavior

100_000.times{|i| ""; # Generate an empty string
h = GC.stat
puts "#{i}¥t#{h[:total_allocated_object]}¥t#{h[:total_freed_object]}"}

Leakey behavior

ary = []
100_000.times{|i| ary << "" # generate an empty string and store (leak)
h = GC.stat
puts "#{i}¥t#{h[:total_allocated_object]}¥t#{h[:total_freed_object]}"}

Live obj#

Internal Inspection features
Again

• Generally, you don’t need to use these
inspection features

• If you got a trouble, please remember
inspection features

34

goto :next_topic

Change the title of

this presentation to...

35

Lecture series of Computer Science

How to make interpreter?
#3 Method dispatch

Prof. Koichi Sasada (*1)

Akihabara University (*2)

*1: Prof. means ...

*2: Of course, joking. No such University 
36

Review slide
Requirement and Assumption

• You need to finish “Ruby language basic” course

• This course uses “Ruby” language/interpreter

– One of the most popular languages

– Used in world-wide programming

• Web application

• Text processing

• and everything!!

– CRuby

• Ruby has many alternative implementations

• CRuby has their own VM
37

Review slide
How to implement virtual machine?

• Execute instructions

– Execute compiled instructions (bytecodes)

– Pointed by “Program counter” (PC)

• Stack machine architecture

– All of values on the stack

– Stack top is pointed by “Stack pointer” (SP)

– V.S. Register machine architecture

• Advantages and disadvantages

• Yunhe Shi, et al: “Virtual machine showdown: stack
versus registers” (2005)

38

39

Review slide
Stack machine execution (basic)

Ruby Program

a = b + c

getlocal b
getlocal c
send +
setlocal a

YARV Instructions

a

b

c b

c

b+c

b+c

YARV Stack

Compile

PC SP

local env

Review slide
[Advanced] Optimization techniques

• Peephole optimizations (compiler technique)
– Reduce instruction number

• Make macro instructions
– Operand unification
– Instruction unification

• Direct threading
– Using GCC specific feature

• Stack caching
– n-level stack caching
– Impact on CPU’s branch prediction

40

41

Review slide
[Advanced] VM generator

VM Instrunction
Description

Compiler
(Optimizer)

Virtual Machine

Dis-assembler

Assembler

Documents

VM generator enables
flexible VM building

Today’s lecture:
Method dispatch

 # Example

 recv.selector(arg1, arg2)

• recv: receiver

• selector: method id

• arg1, arg2: arguments
42

Before method dispatch

1. Evaluate `recv’

2. Evaluate `arg1’ and `arg2’

3. Method dispatch (`selector’)

Ruby’s disassembled bytecodes of Ruby 2.0 trunk
0016 getlocal recv, 0 # 1 receiver
0019 getlocal arg1, 0 # 2 arg1
0022 getlocal arg2, 0 # 2 arg2
0025 send <callinfo!mid:selector, argc:2, ARGS_SKIP>

recv

arg1

arg2

Stack after #2

sp

43

Method dispatch
Overview

1. Get class of `recv’ (`klass’)
2. Search method `body’ named `selector’ from `klass’

– Method is not fixed at compile time
– “Dynamic” method dispatch

3. Dispatch method with `body’
1. Check visibility
2. Check arity (expected args # and given args #)
3. Store `PC’ and `SP’ to continue after method returning
4. Build `local environment’
5. Set program counter

4. And continue VM execution

44

Overview
Method search

• Search method from `klass’

1. Search method table of `klass’

1. if method `body’ is found, return
`body’

2. `klass’ = super class of `klass’ and
repeat it

2. If no method is given,
exceptional flow

• In Ruby language,
`method_missing’ will be called

BasicObject

Object

C1

C2

Kernel

selector: body
...

45

Each Class has
method table

Overview
Cheking arity and visibility

• Checking arity

– Compare with given argument number and
expected argument number

• Checking visibility

– In Ruby language, there are three visibilities (can
you explain each of them ?:-p)

• public

• private

• protected

46

Overview
Building `local environment’

• How to maintain local variables?

→ Prepare `local variables space’ in stack

→ `local environment’ (short `env’)

• Parameters are also in `env’

47

Overview
Building `local environment’

recv

arg1

arg2

Stack before
method dispatch

recv

arg1

arg2

Stack after
method dispatch

sp loc1

loc2

sp

ep ep: env pointer

all local variables
are accessible with

`ep’
(ep[0], ep[-1], ep[-2], ...)

48

env

Method dispatch
Overview (again)

1. Get class of `recv’ (`klass’)
2. Search method `body’ `selector’ from `klass’

– Method is not fixed at compile time
– “Dynamic” method dispatch

3. Dispatch method with `body’
1. Check visibility
2. Check arity (expected args # and given args #)
3. Store `PC’ and `SP’ to continue after method returning
4. Build `local environment’
5. Set program counter

4. And continue VM execution
It seems very easy

and simple!
and slow...

About 7 steps

49

Method dispatch
Ruby’s case

• Quiz: How many steps in Ruby’s case?

– Hint: More complex than I explained overview

① 8 steps

② 12 steps

③ 16 steps

④ 20 steps

Answer is
About ④ 20 steps

50

Method dispatch
Ruby’s case

1. Check caller’s arguments
1. Check splat (*args)
2. Check block (given by compile time or block parameter (&block))

2. Get class of `recv’ (`klass’)
3. Search method `body’ `selector’ from `klass’

– Method is not fixed at compile time
– “Dynamic” method dispatch

4. Dispatch method with `body’
1. Check visibility
2. Check arity (expected args # and given args #) and process

1. Post arguments
2. Optional arguments
3. Rest argument
4. Keyword arguments
5. Block argument

3. Push new control frame
1. Store `PC’ and `SP’ to continue after method returning
2. Store `block information’
3. Store `defined class’
4. Store bytecode info (iseq)
5. Store recv as self

4. Build `local environment’
5. Initialize local variables by `nil’
6. Set program counter

5. And continue VM execution

... simple?

(*) Underlined items are additonal process 51

Ruby’s case
4. Dispatch method with `body’

• Previous explanation is for Ruby methods
– `body’ (defined as rb_method_definition_t in method.h) has several

types at least the following two types:
• Method defined by Ruby code
• Method defined by C function (in C-extension)

• Quiz: How many method types in CRuby?
– Hint: At least 2 types (Ruby method and C method)
① 3 types
② 6 types
③ 9 types
④ 11 types

Answer is
About ④ 11 types

52

Ruby’s case
Method types

1. VM_METHOD_TYPE_ISEQ: Ruby method (using `def’ keyword)

2. VM_METHOD_TYPE_CFUNC: C method
3. VM_METHOD_TYPE_ATTRSET: defined by @attr_accessor

4. VM_METHOD_TYPE_IVAR: defined by @attr_reader

5. VM_METHOD_TYPE_BMETHOD: defind by `define_method’

6. VM_METHOD_TYPE_ZSUPER: used in internal

7. VM_METHOD_TYPE_UNDEF: `undef’ed method

8. VM_METHOD_TYPE_NOTIMPLEMENTED: not implemet

9. VM_METHOD_TYPE_OPTIMIZED: optimization

10. VM_METHOD_TYPE_MISSING: method_missing type

11. VM_METHOD_TYPE_CFUNC_FRAMELESS: optimization two

There are 11th different method dispatch procedure
(dispatch by switch/case statement) 53

Ruby’s case

• Quiz: I introduce (virtual) registers `pc’, `sp’
and `ep’. How many registers in virtual
machine (in Ruby 1.9.x)?

① 4 registers

② 6 registers

③ 9 registers

④ 11 registers

Answer is
About ④ 11 registers

↓
Need to store/restore

11 registers
each method call

54

Ruby’s case
Store registers

• Introduce “control frame stack” to store registers

– To store `pc’, `sp’, `ep’ and other information, VM has
another stack named “control frame stack”

– Not required structure, but it makes VM simple → Easy to
maintain

/* 1.9.3 */
typedef struct {
 VALUE *pc; /* cfp[0] */
 VALUE *sp; /* cfp[1] */
 VALUE *bp; /* cfp[2] */
 rb_iseq_t *iseq; /* cfp[3] */
 VALUE flag; /* cfp[4] */
 VALUE self; /* cfp[5] / block[0] */
 VALUE *lfp; /* cfp[6] / block[1] */
 VALUE *dfp; /* cfp[7] / block[2] */
 rb_iseq_t *block_iseq; /* cfp[8] / block[3] */
 VALUE proc; /* cfp[9] / block[4] */
 const rb_method_entry_t *me;/* cfp[10] */
} rb_control_frame_t;

/* 2.0 */
typedef struct {
 VALUE *pc; /* cfp[0] */
 VALUE *sp; /* cfp[1] */
 rb_iseq_t *iseq; /* cfp[2] */
 VALUE flag; /* cfp[3] */
 VALUE self; /* cfp[4] / block[0] */
 VALUE klass; /* cfp[5] / block[1] */
 VALUE *ep; /* cfp[6] / block[2] */
 rb_iseq_t *block_iseq; /* cfp[7] / block[3] */
 VALUE proc; /* cfp[8] / block[4] */
 const rb_method_entry_t *me;/* cfp[9] */
}

11 regs 10 regs
reduced, but many yet

55

args

Value stack

locals

Control frame

PC SP

DFP

BP

flags

self

me

iseq
block
iseq

proc

LFP

spval

pushed
values

$_

$~

flipflo
p

data

def foo
 bar{
 ..
 }
end
def bar
 yield
end
foo

PC SP

DFP

BP

flags

self

me

iseq
block
iseq

proc

LFP

top iseq

foo iseq args

locals

spval

pushed
values

PC
SP

BP

flags
me

iseq

bar iseq

args

locals

spval

pushed
values

PC SP

DFP

BP

flags

self

me

iseq
block
iseq

proc

LFP

foo block
iseq

args

locals

spval

pushed
values

local[0]

DFP

block
iseq

proc

LFP

Ruby 1.9 VM stacks structure

self

per method

rb_thread_t::cfp
points current control frame

56

Ruby’s case
Complex parameter checking

• “def foo(m1, m2, o1=..., o2=...,

 p1, p2, *rest, &block)”
– m1, m2: mandatory parameter

– o1, o2: optional parameter

– p1, p2: post parameter

– rest: rest parameter

– block: block parameter

• From Ruby 2.0, keyword parameter is
supported

57

Method dispatch
Ruby’s case

1. CHeck caller’s arguments
1. Check splat (*args)
2. Check block (given by compile time or block parameter (&block))

2. Get class of `recv’ (`klass’)
3. Search method `body’ `selector’ from `klass’

– Method is not fixed at compile time
– “Dynamic” method dispatch

4. Dispatch method with `body’
1. Check visibility
2. Check arity (expected args # and given args #) and process

1. Post arguments
2. Optional arguments
3. Rest argument
4. Keyword arguments
5. Block argument

3. Push new control frame
1. Store `PC’ and `SP’ to continue after method returning
2. Store `block information’
3. Store `defined class’
4. Store bytecode info (iseq)
5. Store recv as self

4. Build `local environment’
5. Initialize local variables by `nil’
6. Set program counter

5. And continue VM execution

Complex
and

Slow!!!

58

Method dispatch
Overhead

59

OS: Linux 2.6.31 32-bit
CPU: IntelCore2Quad 2.66GHz
Mem: 4GB
C Compiler: GCC 4.4.1, -O3
Profiled by Oprofile

ruby 1.9.3dev (2010-05-26)
Profiled by Mr. Shiba

VM Obj

Others
Insn

Method Block

Inst Compile
GC

MM

Cfunc

NotRuby

Others

Pentomino

VM

Obj

Others

Insn

Method

Block Others Compile GC MM
Cfunc

NotRuby

Others

Fib

Method dispatch overhead is big
especially on micro-benchmarks 

Homework

• Report about “Method Dispatch speedup techniques”
1. Analyze method dispatch overhead on your favorite

application

2. Survey method dispatch speed-up techniques

3. Propose your optimization techniques to improve
method dispatch performance

4. Implement techniques and evaluate their performance

• Deadline: 2012/12/23 (Sun) 23:59 JST

• Submit to: Koichi Sasada <ko1@rvm.jp>

• This report is important for your grade of this course!

60

mailto:ko1@rvm.jp

Lecture was finished 

Presentation is not finished

61

Back to the presentation
“Implementation Details of Ruby 2.0 VM”

Report
“Optimization techniques for

Ruby’s method dispatch”

Koichi Sasada

62

Speedup techniques
for method dispatch

1. Specialized instructions

2. Method caching

3. Caching checking results

4. Frameless CFUNC method

5. Special path for `send’ and `method_missing’

Introduced techniques from Ruby 2.0
Today’s main subject 

63

Note that these optimizations
may not be my original.

Method dispatch overheads

64

1.Check caller’s arguments
2.Search method `body’

`selector’ from `klass’
3.Dispatch method with `body’

1. Check visibility and arity

2. Push new control frame
3. Build `local environment’
4. Initialize local variables by `nil’

Optimization
Specialized instruction (from 1.9)

• Make special VM instruction for several
methods

– +, -, *, /, ...

65

def opt_plus(recv, obj)
 if recv.is_a(Fixnum) and obj.is_a(Fixnum) and
 Fixnum#+ is not redefined
 return Fixnum.plus(recv, obj)
 else
 return recv.send(:+, obj) # not prepared
 end
end

Optimization
Specialized instruction

• Pros.

– Eliminate all of dispatch cost (very effective)

• Cons.

– Limited applicability

• Limited classes, limited selectors

• Tradeoff of VM instruction numbers

– Additional overhead when not prepared class

66

Optimization
Method caching

• Eliminate method search overhead

– Reuse search result

– Invalidate cache entry with VM stat

• Two level method caching

– Inline method caching

– Global method caching

67

class =>
body

class, id => body
class, id => body

....
class, id => body

BasicObject

Object

C1

C2

Kernel

Inline cache
1 element per call-site

Global cache
hash table

miss

method search

return fill

miss

fill

naive search

Optimization
Caching checking results (from 2.0)

68

• Idea: Visibility and arity check can be skipped
after first checking

– Store result in inline method cache

1. Check caller’s arguments

2. Search method `body’ `selector’ from `klass’

3. Dispatch method with `body’
1. Check visibility and arity

1. Cache result into inline method cache

2. Push new control frame

3. Build `local environment’

4. Initialize local variables by `nil’

Se
co

n
d

 t
im

e

Fi
rs

t
ti

m
e

Optimization
Frameless CFUNC (from 2.0)

• Introduce “Frameless” CFUNC methods

– Idea: Several CFUNC doesn’t need method frame

• For example, String#length doesn’t need method frame.
It only return the size of given String

69

1. Check caller’s arguments

2. Search method `body’ `selector’ from `klass’

3. Dispatch method with `body’
1. Check visibility and arity

2. Push new control frame

3. Build `local environment’

4. Initialize local variables by `nil’

Sk
ip

 h
er

e

Optimization
Eliminate frame building (from 2.0)

• Compare with specialized instruction

– Pros.

• You can define unlimited number of frameless methods

– Cons.

• A bit slow compare with specialized instruction

• Note that evaluation result I will show you
doesn’t include this technique

Optimization
Special path for `send’ and `method_missing’ (from2.0)

71

send(:foo)

invoke send method
(cfunc)

invoke `foo’ method

Before

send(:foo)

search `foo’ invoke `foo’ method

After

Evaluation result
Micro benchmarks

Sp
ee

d
u

p
 r

at
io

Faster than first date

trunk 2012/10/13 trunk 2012/10/31
72

0

0.5

1

1.5

2

vm1_attr_ivar*

vm1_attr_ivar_set*

vm1_block*

vm1_simplereturn*

vm1_yield*

vm2_defined_method*

vm2_method*

vm2_method_missing*

vm2_method_with_block*

vm2_poly_method*

vm2_send*

vm2_super*

vm2_zsuper*

Evaluation results
Applications

Sp
ee

d
u

p
 r

at
io

Faster than first date

trunk 2012/10/13 trunk 2012/10/31
73

0

0.2

0.4

0.6

0.8

1

1.2

1.4

app_aobench

app_erb

app_factorial

app_fib

app_mandelbrot

app_pentomino

app_raise

app_strconcat

app_tak

app_tarai

app_uri

Future work

• Restructure “method frame”

– Reduce required information per frame

• Improve “yield” performance

– Using something cached

74

Conclusion
Method dispatch speed-up

• Ruby’s method dispatch is nightmare

– Too complex

• Speedup upto 50% at simple method dispatch
with new optimizations

• Need more effort to achieve performance
improvements

75

Other optimizations from 2.0

• Introducing Flonum (only on 64bit OSs)

• Lightweight Backtrace capturing

• Re-structure VM stacks/ISeq data

• Bitmap marking garbage collection (by nari3)

• “require” performance (not by me)

76

Introducing Flonum
(only on 64bit CPU)

• Problem: Float objects are not immediate on Ruby 1.9
– It causes GC overhead problem

• To speedup floating calculation, represent Float object
as immediate object
– Specified range Float objects are represented as immediate

object (Flonum) like Fixnum
• 1.72723e-77 < |f| < 1.15792e+77 (approximately) and +0.0

• Out of this range and all Floats on 32bit CPU are allocated in heap

– No more GCs! (in most of case)

– Flonum and old Float are also Float classes

– Proposed by [K.Sasada 2008]
– On 64bit CPU, object representation was changed

77

Benchmark results

0

0.5

1

1.5

2

2.5

3

ap
p

_a
n

sw
er

ap
p

_f
ac

to
ri

al

ap
p

_p
en

to
m

in
o

ap
p

_t
ak

io
_

fi
le

_c
re

at
e

io
_

se
le

ct

lo
o

p
_f

o
r

lo
o

p
_w

h
ile

lo
o

p

so
_a

rr
ay

so
_c

o
u

n
t_

w
o

rd
s

so
_f

as
ta

so
_m

an
d

e
lb

ro
t

so
_n

b
o

d
y

so
_n

si
ev

e_
b

it
s

so
_p

id
ig

it
s

so
_s

ie
ve

vm
1

_
b

lo
ck

*

vm
1

_
fl

o
at

_
ca

lc
*

vm
1

_
le

n
gt

h
*

vm
1

_
lv

ar
_s

et
*

vm
1

_
re

sc
u

e
*

vm
2

_
ar

ra
y*

vm
2

_
ca

se
*

vm
2

_
m

et
h

o
d

*

vm
2

_
p

o
ly

_m
et

h
o

d
_o

v*

vm
2

_
ra

is
e2

*

vm
2

_
su

p
e

r*

vm
3

_
b

ac
kt

ra
ce

vm
3

_
th

re
ad

_m
u

te
x

vm
_

th
re

ad
_m

u
te

x1

vm
_

th
re

ad
_p

as
s

clean/flonum

clean/flonum.z

78

Flonum: Float in Heap (1.9 or before)

HEAD
- T_FLOAT
- Float
- etc

IEEE754
Double

-

VALUE

- 8B x 6w =
48 byte
for Float object

On 64bit CPU All of Float object

are allocated in heap

Data structure in heap

contains IEEE754/double

Flonum: Encoding
IEEE754 double floating number

b63 b62-b52 b51-b0

m: mantissa (52bit) e: exponent (11bit)

s: sign（1bit）

64bit double

80

Flonum: Range

b63 b60-b52 b51-b0 b60-b62

IEEE754 double

Check if e (b52 to b62) is with-in 768 to 1279,
then it can be represent in Flonum.

This check can be done with b60-b62.

(+0.0 (0x00) is special case to detect)

81

Flonum: Encoding

b63 b60-b52 b51-b0
b61
b62

b63 b60-b52 b51-b0 1 0

Only “rotate” and “mask”

IEEE754 double

Ruby’s Flonum

Flonum representation bits (2 bits)
#define FLONUM_P(v) ((v&3) == 2)

☆ +0.0 is special case (0x02)

82

Flonum:
Object representation on VALUE

Non Flonum Flonum

Fixnum ...xxxx xxx1 ...xxxx xxx1

Flonum N/A ...xxxx xx10

Symbol ...xxxx 0000 1110 ...xxxx 0000 1100

Qfalse ...0000 0000 ...0000 0000

Qnil ...0000 0100 ...0000 1000

Qtrue ...0000 0010 ...0001 0100

Qundef ...0000 0110 ...0011 0100

Pointer ...xxxx xx00xxxx x000

83

Lightweight Backtrace capturing

• Backtrace is Array of String objects

– [“file:lineno method”, ...]

• Idea: Capture only ISeqs and translate to
String (file and line) only when it is accessed

– Backtrace information may be ignored

84

・・・

iseq1

iseq2

iseq_n

・・・

String

String

String

After Ruby 2.0

What we should do?

85

Performance overhead

86

OS: Linux 2.6.31 32-bit
CPU: IntelCore2Quad 2.66GHz
Mem: 4GB
C Compiler: GCC 4.4.1, -O3
Profiled by Oprofile

VM

Obj

Others

Insn

Method

Block Others
Compile

GC

MM

Cfunc

NotRuby

Others

rdoc

VM

Obj

Others

Insn
Method

Block Others Compile

GC

MM

Cfunc

NotRuby

Others

Rails

ruby 1.9.3dev (2010-05-26)
Profiled by Mr. Shiba

VM techniques

• On Rails and other applications, VM is not an
bottleneck

• On Mathematic, Symbolic computation, VM is
matter

– To speedup then, we need compilation framework

• 2.0?

87

Object Allocation and
garbage collection

• Lightweight object allocation

– Sophisticate object creation

– Create objects in non-GC managed area

• Sophisticate Garbage collection

– Per-type garbage collection

– Generational garbage collection

• Introduce write barriers with dependable techniques

88

Parallelization

• Multiple processes

• Multiple VMs

• Multiple Threads

No time and space to discuss about them!

89

Conclusion

90

Conclusion

Our challenge has
 just begun!!

俺たちの戦いはまだ始まったばかりだ！

91

謝謝
Thank you for your attention

笹田 耕一
Koichi Sasada
Heroku, Inc.

ko1@heroku.com

@koichisasada
92

