Toward efficient
Ruby 2.1

Koichi Sasada

<kol@heroku.com>

Heroku, Inc.

Agenda

*Ruby 2.1 Schedule

*Ruby 2.1 new “internal” features

* Internal object management hooks

* Object allocation tracing
* GC hooks

* RGenGC: Restricted Generational Garbage
Collection € Today’s main topic

*Ruby 2.1 expected “internal” features
* Sophisticated inline cache invalidation mechanism
* Memory efficient string management
* Useful debugger

summary

*We are implementing new features and
improving Ruby’s quality for Ruby 2.1

*Especially introducing “Generational garbage
collector” which I’'m working on will improve
huge performance

*Ruby 2.1 is currently scheduled on Dec 25,
2013

Quoted “2.1”

“2:1 And there went a man of the house of
Levi, and took to wife a daughter of Levi.”

- Book of Exodus

21T LEDKDUNEY DA T TLE
DIRFDED/=,”

-HHITTREE

Quoted “2.1”

In this presentation,
there are some quoted “2.1” sentence.

Idea of “Quoting” is from

“Things a Computer Scientist Rarely Talks About”
“AVEA—ARFEENOHOT-ICELIENIE”

by Donald E. Knuth

But no consideration in this presentation about them.

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada

COMPUTER
SCIENTIST
RARELY
TALKS

ABOUT Y
AN

Donald E. Knuth

Whoam | ?

« - H $t— (Koichi Sasada) —
 Matz team at Heroku, Inc. h

* Full-time CRuby development —

* CRuby/MRI committer

* Virtual machine (YARV) from Ruby 1.9
* YARV development since 2004/1/1

PROGRAMMING

Language

Matz team at Heroku, Inc.}
Hierarchy

Matz @ Shimane
Title collector

Communication
ith Skype

W

kol @ Tokyo Nobu @ Tochigi
EDD developer Drunker

Recent status

My leg with a bivalve cast

*5/2 | got sprain...
*5/27 | got cold...

*All: Please care about

yourself

* Especially, do not walk
with book reading

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada

Quoted “2.1”

“Object-oriented scripting language Ruby is a
programming language designed by Matsumoto.”

- Efficient Implementation of Ruby Virtual Machine
Doctoral thesis by Koichi Sasada

"7 IRERX DY TR E FERuby £, HAEIZLD
(EREISN/-TO00S53 0555 THAB. 7
- EE&Rubyﬁﬁfﬁ 7//0)/579%*
H#—, 1L

Ruby’s rough history

1993 2/24

Birth of Ruby 1996/12 1999/12

(in Matz’ computer) Ruby 1.0 Ruby 1.4

2003/8
Ruby 1.8

2013/02
Ruby 2.0.0

1995/12 1998/12 | 2000/6
Ruby 0.95 Ruby 1.2 | Ruby 1.6

1t release

2000 Book:
Programming Ruby

2009/1
Ruby 1.9.0
2004/1
Start YARV proj. 2012/4
ISO Ruby

2004~

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada

Ruby on Rails

10

Quoted “2.1”

“2.1 Changes from Ruby 1.9

Added and modified libraries from Ruby 1.9 are
follows”

- Programming Ruby 1.9 Library edition
by Dave Thomas, with Chad Fowler and Andy Hunt

“2.1Ruby 1.9D 4TS DEE =
Ruby 1.9 TEEMFE/IZFZEEFIN/=Z1T7 5L
DEHYTT ,”

- 00532 JRuby 1.9 S1 TS5

Ruby 2.0

*New features (see Rubyist Magazine)
* Keyword arugments
* Refinements
* Module#prepend

*Ruby 2.0.0-p195 was already released

#-"-rdoc -+~

EWS for Ruby 2.0.0

“This document is

*aliased method:

*ENV.to_h is a new alias for ENV.to_hash

*fiber

changes made between

releases except for bu fixes.

Note that each entry is kept 5o brief that no reason
behind or

reference information s supplied with. For a full
Tt of changes

with all sufficient information, see the Changelog
file.

Changes since the 1.9.3 release

CAPl updates

* NUM2SHORT() and NUM2USHORT() added. They
are similar to NUM2INT, but short.

* b_newob]_of() and NEWOB)_OF{) added. They
create anew object of a given class

ibrary updates (outstanding ones only)

= builtn classes

*array
* added method:
*added Arraytsearch forbinary search
*incompatible changes:

* random parameter of Arrayishufel and
Arrayiisample now

beriresume cannot resume a iber which
invales Foermraner

“file
* extended method:

* Filefnmatch? now expands braces i the
pattern f

File::FNM_EXTGLOB option s given.

*improvements:

*introduced the bitmap marking which
suppresses to copy a memory page

with Copy-on-Write

introduced the non-recursive marking which
avldssmespect naoveon

* GCxProfiler
* added method

added GC:rofleaw_datawhichretuns
aw o do o G

*Hash
* added method

sdded Hashito_h asexplct comversion
method, like Arrayis

* extended method:

* Hashidefault_proc= can be passed nil to clear

* when given Range arguments, Arrayitvalues_at
now returns il for each

value that s out.of-range.

* Enumerable
* added method:

added Enumerableiazy method for lazy

* Enumerator
» added method:

* added Enumeratorfsze for lazy size:
evaluation.

* extended method:

“Kernel

* added method

* added KerneliHash conversion method ke
Array() o Fioat()

* added Kernelusing, which imports
refinements nto the current scope.

fexperimental]

* added Kernel#_dir.
dirname.

which returns a current

* added Kernelfcaller_locations which returns
anarrayof

frame information objects

* extended method:

*Kerneliwarn accepts multiple argsin like puts

Size evaluation.

“Env

argument ' which specify

required calle size

neliito_enum and enum_for accept a block
foriany e eviomion.

*incompatible changes:

* system() and exec() closes non-standarfile
descriptors

(The default of :close_others option s changed
to true by defauit)

* respond_to? againsta protected method now
returns false unless

the second argument istrue.

callee_ has returned to the original
behavior, and now

returns the called name but not the original
name inan

allased method.
*Kernelfinspect does not call to_s anymore

(itused to callredefined ito,s).

*Loaderror
* added method:

* dded ondErrorgath methosgo et e
file name that could

loaded.

* Module
* added method:

* added Moduletprepend which is similar to
Modulefinclude,

however a method in the prepended module.
overrides the

corresponding method in the prepending
module.

added Modulefrefine, which extends a class
or o otaly

[experimental]

added Modetreinements, whic retuns
refmemns defnea

receiver. [experimental]

» added Moduletusing, which imports
refinements into the receiver.

[experimental]
* extended method:

Modulefidefine_method accepts a
UnboundMethod from a Module.

* Modulesconst_get accepts qualified
constant string, e.5

Object const_get("Foo: Bar::Baz")

* Mutex
* added method:

* added Mutextowned? which returns the
mutexis held by current

thread or not. [experimental]
*incompatible changes:

* Mutexflock, Mutexttunlock, Mutexttry_lock,
Mutextisynchronize

and Mutextisleep areno longer allowed to be
used from trap handler

and raise a ThreadError in such case.

* Mutextsleep may spurious wakeup. Check
after wakeup.

*NilClass
* added method

* added nilto_h which returns ()

* Process
* added method

* added getsid for getting session id (unix only).

*Range
* added method
* added Range#isize for lazy size evaluation.

* added Rangefibsearch for binary search.

WS i

* added Signal signame which returns signal

arespecified

*string
* added method

* added String# returning a copied string
‘whose encoding is ASCII-8BIT.

* change return value:

¢ StingHines now reurns an rayinstead of an

* Stringichars now returns an array nstead of
an enumerator.

*Stringécodepoints now returns an array
instead of an enumerator.

*StringHbytes now returns an array instead of
an enumerator.

*struct
* added method

* added Structito_h returning values with keys
corresponding to the.

instance variable names.

*Thread
* added method

* added Threadthread_variable_get for getting
thread local variables

(these are different than Fiber local variables).

* added Threadithread_variable_set for setting
thread local variables.

* added Threadithread_variables for getting a
listofthe thread local

variable keys.

* added Threadiithread_variable? for testing to
seeifa particular thread

variable has been set

added Threadibacktrace_locations which
retum soian momaton ot

Kernelécaller_locations
*incompatible changes:

* Thread#oin and Threadivalue now raises a
ThreadError if target thread

isthe current or main thread.

*Time.
* change return value:

*Timetto_s returned encoding defaults to US.
ASCII but automatically

* new class. This class s replacement of
set_trace_func.

variable. See Net:HTTP:new for details.

o and et cemprssion srenow
requested for all equests b

defaul, See Net:HTTP for details.

SSL sessions are now reused across connections
fora single instance.

T speeds up contecton by using 2 revuly
negotiated sessio

* new methods:
* Net:HTTPHlocal_host

* Net:HTTPHlocal_hos

* Net:HTTPHocal port

* Net:HTTPHlocal_por

* extended method:

t:HTTPHconnect uses local_host and
local por 1 peciied

“ net/imap

* Net:IMAP default_imap_port

* Net:IMAP default_tis_port

New

* added method:

added main.define_method which defines a
sobalfuncion

* Add HTMLS tag maker.

* CGl#header has been renamed to
Cliihttp_header and

aliased to CGliheader.

* When HTMLS tagmaker called, overwrite
Calttheader,

CGlitheader function is to create a <header>
element

?lony hasbeen removed. Usetigfencode

*iofwait
* new features
* added I0#wait_writable method,

* added IO#wait_readable method asalias of
108wt

* net/http
* new features

* Proxies are now automatically detected from
the hitp_proxy environment

%eﬁtu

* new method:

* Objectspace reachable_objects_from(obi)

* openss!

* Consistently raisean error when trying to
encode nil values. Al instances

of OpenSSL::ASN L Primitive now raise TypeError
when calling to_der on an

instance whose value is nil. Allnstances of
OpenSSLEASNL: Constructive.

e NoMethodError in the same case.
Constructng such vaues s 50

permitted.

*TLS 1.1 1.2 support by setting
OpenSSL:SsL:5SLContextissl_version to

TLSV1_2, TLSv1 2 server, TLsv1

12 s client
or TUsvi_ 1, TLSvi_ 1_server

{TLSv1_1_client, The version being effectively
used can b queried

with OpensSLi:SSLssl_version. Furthermore, itis
also possible to

blacklist the new TLS versions with
OpenSSLESSL:0P_NO_TLsvi_1

OpenSSL:SSL::0P_NO_TLsv1_2.

* Added
OpenSSL:SSL:SSLContentérenegotiation_cb. A
user-defined callback

may be set which gets called whenever new
handshake is negotiated. This

also allows to programmatically decline (client)
renegotiation attempt:

“ocw runfll s moc
ial o i
default_port
ight

*Support for "0/n" splitting of records as BEAST
mitigation via

OpenssL::SsL::0P_DONT_INSERT_EMPTY_FRAGME
NTS.

= OpenSSL requires passwords for decrypting
PEM-encoded files to be at least

four characters long. This led to awkward
situations where an export with

a password with fewer than four characters was
possible, but accessing the.

e starwards aled,OpenssLPhey: RSk,
OpenssL::PKey:D:

OpenssL::Pey:£C therefore now enforce the.
same check when exporting a

key to PEM with apassword - it has o be
atleast four characters

Tong.

*SSL/TLS support for the Next Protocol
Negotiation extension. Supported

with OpenssL 1.0.1and higher.

* OpensSL:OPENSSL_FIPS allows client
applications to detect whether OpenSSL

d 1o reacto the

* ostruct

S—
‘OpenStructieach_pair L]

* Openstructieql?

* Openstructthash

* OpenStructito_h converts the struct o a hash.

* extended method:

* OpenStruct.new also accepts an Openstruct /
Struet.

* pathname

* extended method:

* Pathname#ind returns an enumerator if o
blockis given.

*rake

* rake has been updated to version 0.9.5

“This version is backwards-compatible with
previous rake versions and

contains many bug fixes.

See

Pt/ rake.rubyforge.org/doc/release_notes/rake-

0.5_5_rdoc i for alist

of changesin rake 093,0.9.4and 0,95,

*rdoc

* rdoc has been updated to version 4.0

Thsverson s argely backvards-compatle with
previous rdac version:

he most notable change s an update to the ri
aota et (1 data

be regenerated for gems shared across rdoc
versions). Further APl changes.

areinternal and won't afect most users.

see

* shellwordstshellescapel) now stringifies the
given object using to_s

* Shellwordstishelljoin() accepts non-string
objects n the given

array, each of which isstringfied using to_s,

*syslog

= Added Syslog::Logger which provides a Logger
APl atop Syslog.

Sysog:Priony,SsogsLeve Syslogi Opion and
Syslog::Mac

rdoc for alist of

changesin rdoc 4.0,

* new methods:

* Resolv::DNSitimeouts=

* Resolv::DNs::Conf

EXVIL: Documentitwrite supports Hash
arguments

* REXML::Documentitwrite supports
new cencoding option. It changes

L document encoding. Without encoding
opton,encorng

XML declaration is used for XML document
encoding,

* RubyGems

* Updated to 2.0.0.preview2

 RubyGems200 feturesthe olowing
improvements:

of available
constants on a

running system.

* tmpdir
*incompatible changes:

- irmitmpruss Fletlsemove_entry
instead of

FileUtils remove_entry_secure. This means that
applications should not

change the permission of the created temporary.
directory to make

accessible from other users.

*yaml

= Syck has been removed. YAML now completely
depends on libyaml being.

instaled.

*alib

* Added streaming support for Zlb:Inflate and
Zib::Deflate. This allows.

processingafssuesmuwithout te se of arge
amounts of m

* Added support for the new deflate strategies
2lib::RLE and ZIib::FIXED.

* 2l streams are now processed without the GVL.
hisal lib and

* Improved supp
with ruby 2,00+

* Agem can have arbitrary metadata through
Gem:Specificationtimetadata

m search’ now defaults to ~remote and is
anchore ke gem st

* Added ~document to replace ~rdoc and -
Use~no-document to

deflate streams to be processed in paralle.

Language changes

*Stringhlines
*Stringéchars
*Stringécodepoints

*Stringhbytes

These methods no longer return an Enumerator,
although passinga

blockis sill supported for backwards
compatibiliy

Code ke st.lines.with_index(1) (| line,
linenol ..} nolonger

works because st.lines returns an array. Replace
Tines wi

each_line in such cases.

*Signalrap

See above.

* Merge Onigmo.

https://github.com/k-takata/Onigmo

*The :close_others option is true by default for
system() and execl).

Also, the close-on-exec flag s set by default for
allnew file descriptors.

“This means file descriptors doesn'tinherit to
spawned process unless

explicity requested such assystem(.., fd=>1d),

* Kemelirespond to? sganstaprotected method
now returns false

unless the second argument s true.

* Dir.mktmpdir in lib/tmpdir.rb

See above.

* Openstruct new methods can conflict with

* Added

only generate rdoc.

= Only i-format documentation s generated by
default.

‘gem server uses RDoc::Servlet from RDoc 4.0
to generate HTML

documentation.

Foran expanded listof updates and bug fixes see:

tps:/github.com/rubygems/rubygems blob/ms.
ter/History:

= shellwords

* Default source encoding is changed to UTF-S.
(was Us-ASCIl)

Compatbilty issues (excluding feature bug.
fixes)

* Arrayivalues_at

See above.

"each_pair","eq?", "hash" or "to_h".

* Threadoin, Threadivalue

See above.

* Mutextlock, Mutextiunlock, Mutexttry_lock,
Mutextisynchronize and Mutexksleep

See above.

13

[Ruby(FEEE U T2.0TREESEMK] « DO6BL
WEVSKHHIR

2013/02/14
TH —H=HELinux

=L T =T Fluwda ! (108 |\ wyreeAd—F |/ 257 =

[Rubyld/({—=3>,2.0T,. SEBELTIFE
FERALEZ] —. FR - BEEENET2E
15SHETRHEL TLS [Developers
Summit 20131 T. Rubyd&EHDIFETHD
FOBEWEITVAR (BE) FCDESL
Iz

Ruby 2.0(d&. Ruby&H20@FE=EL =L
T. 2013F2R824H(CUV) -9 B3 FEDH Ty
o~ = e - _ EeXxD 7 .
N—=3>, FOEEREFEOPRT. /N RO A
32 0DFHETHEIT S EEBIC,

“Ruby is almost matured as a

programming language with 2.0”
http://itpro.nikkeibp.co.jp/article/NEWS/20130214/456322/

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 14

Ruby 2.1 release announcement

“I‘'m planning to call for feature proposals soon like
2.0.0 [ruby-core:45474], so if you have a suggestion
you should begin preparing the proposal.”

“BIEAIZ, Ruby 2.1.0 /#2013 412 F25 HD!)!)—X
FFELTIVFET, FDI52.0.0 DEFDLOICHEEELE
EEEZTOEIDEYLDT,. PACEFFE I TGIFEFS
FARADEAAZFIZD TS/-SVEH,”

- [ruby-core:54726] Announce take over the release
manager of Ruby 2.1.0

by NARUSE, Yui

Ruby 2.1 schedule

2013/02 2013/12
Ruby 2.0.0 Ruby 2.1.0

RubyKaigi2013 Euruko2013 RubyConf2013
5/30, 31, 6/1 6/28, 29 11/8-10

Events are important for
EDD (Event Driven Development) Developers

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 16

Ruby 2.1

*New features

#-*-rdoc -
= NEWS for Ruby 2.1.0

This document is a st of user visible feature changes made between
releases except for bug fxes.

Note that each entry i kept so brief that no reason behind or
ith, B

with all sufficient nformation, see the Changelog fil.

Changes since the 2.0.0 release

Language changes
Core classes updates (outstanding ones only)

"6
* added environment variable:
* RUBY_HEAP_SLOTS_GROWTH_FACTOR: growth rate of the heap.

0
* extended methods:
* [Oiseek accepts symbols (:CUR, :END, :ET) for 2nd argument.

*Kernel
* New methods:
* Kernelisingleton_method

* Mutex
* Mutextiowned? is no longer experimental.

*string
* New methods:
* String#iscrub and Stringiscrubl verify and fix invalid byte sequence.
* extended methods:
* Ifinvalid: replace s specified for Stringtencode, replace
invalid byte sequence even ifthe destination encoding equals to
the source encoding

* pack/unpack (Array/tring)
* Qland q directives for long long type f platform has the type.

Core classes compatibilty issues (excluding feature bug fixes) []
‘10
*incompatible changes:
* open ignore nternal encoding if external encoding is ASCI88IT
* Moduletancestors

The ancestors of a singleton class now include singleton classes,
in particular itself.

Stdlib updates (outstanding ones only)

N OW, muc h sma | | ert h an R u by 2 . O

* Added Vectorfcross_product

* Net:smTP
* Added Net: STPHrset to implement the RSET command

* pathname
methods:
*Pathnamefwrite
*Pathnamefbinwrite
* OpenssL:aN
* extended methods:
* OpenssLi:BN.new allows Fixnum/Bignum argument

* open-uri
= Support multiple fields with same field name (ke Set-Cookie).

= One-shot multicast DNS support
*Support LOC resources.

* Rinda::RingServer, Rindas: RingFinger
* Rinda now supports multicast sockes. See Rinda:RingServer and
Rinda:RingFinger for details.

* Socket
* New methods:
*Socket getifaddrs

* stringscanner
* extended methods:
* StringScanner#{] supports named captures.
* Tempfile
* New methods:
* Tempile.create

Stalb compatibility issues (excluding feature bug fixes)

~uml
*incompatible changes:
*URI decode_www_form follows current WHATWG URL Standard,
e

It now allows loose percent encoded strings, but denies ;-separator.
*URIencode_www_form follows current WHATWG URL Standard.

It gets encoding argument to convert before percent encode.
UTF-16trings aren't converted to UTF-8 before percent encode by default.

CAPl updates

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada

Quoted “2.1”

“Character set and CES which application should support is
different by users. However, it is not high priority to support
one application supports multi-CES.”

- Implementation of Practical Multilingual Text Manipulation for Ruby (academic paper)

by Yukihiro Matsumoto
(translated by Koichi Sasada)

“FIYr—a A T NEXFE S HLUCES (21—
CEICELGBH, 1 DDT T r—232 5V [al (- #8 3 DCES
[T BB FEFE ST, ”

- Ruby [17 SFHH)* % 5 ZMEDEL (#X)
A 114

Ruby 2.1 features

*Refine m17n introduced from Ruby 1.9
* String#scrub, String#tscrub!

 Verify and fix invalid byte sequence.
* More efforts? | heard Matz has some ideas.

*Refine features introduced from Ruby 2.0
e Keyword arguments
* Refinements
* Module#prepend

Quote about 2.0 from Heroku blog

How it Works = Pricing Add-ons Dev Csg

Blog

Matz on Ruby 2.0 at Heroku's Waza

by Craig - Mar 06

Matz, the creator of Ruby, spoke at Waza for the 20th anniversary of the language and the release of
Ruby 2.0. If you weren't in the sold out crowd, not to worry. Information should flow free and experiences
should be shared; in line with those concepts you can watch Matz's talk right here, then read about what's
new in this version of Ruby and how to run it on Heroku

With slides available on speakerdeck

21

Running 2.0 on Heroku

If you're interested in taking advantage of these new features give it a try on Heroku today. To run Ruby 2.0
on Heroku you'll need this line in your |Gemfile|

ruby "2.0.0"
Then commit to git:

£ git add .
£ git commit -m "Using Euby 2.0 in production™

We recommend that you test your app using 2.0 locally and deploy to a staging app before pushing to

e

production. Now when you |§ git push heroku master| our Ruby buildpack will see that you've
declared your Ruby version and make sure you get the right one.

Of course, Ruby 2.0.0 is ready on Heroku!

22

20 years of simplicity, elegance, and programmer happiness

Hercku, since its founding, has been aligned with the key values of Ruby — simplicity, elegance, and
programmer happiness. Heroku still believes in the pgwer and flexibility of Ruby, and we've invested in the
language by hiring Yukihiro "Matz" Matsumoto, and Nobuyoshi Nakada. We would like to
thank them and the whole Ruby core team for making #% release happen. Join us in celebrating Ruby's
successes and in looking forward to the next twenty ygars by trying Ruby 2.0 on Heroku today.

Me!

23

Ruby apps are running using 1.8.7, you should upgrade. Ruby 1.8.7 is approaching End of Life (EOL) in
three months on June 2013. EOL for Ruby 1.8.7 means no security or bug patches will be provided by the
maintainers. Mot upgrading means you're potentially opening up your application and your users to
vulnerabilities. Don't wait till the final hour, upgrade now to be confident and secure.

Ruby 2.0 has a faster garbage collector and is Copy on Write friendly. Copy on Write or COW 15 an
optimization that can reduce the memaory footprint of a Ruby process when it is copied. Instead of
allocating duplicate memory when a process is forked, COW allows multiple processes to share the same
memaory until one of the processes needs to modify a piece of information. Depending on the program, this
optimization can dramatically reduce the amount of memory used to run multiple processes. Most Ruby
programs are memory bound, so reducing your memory footprint with Ruby 2.0 may allow you to run more
processes in fewer dynos.

If you're not already running a concurrent backend consider frying the Unicorn web server
Features

In addition to running faster than 1.9.3, and having a smaller footprint, Ruby 2.0 has a number of new
features added to the language including:

24

Mention about “Speed”

Ruby 2.0 has a faster garbage collector and is Copy on

Write friendly.
that can reduce Short summary: GC uses bitmap

when it is copie marking and CoW friendly
memory when

processes to share the same memory until one of the
processes needs to modify a piece of information.
Depending on the program, this optimization can
dramatically reduce the amount of memory used to run
multiple processes. Most Ruby programs are memory

bound, so reducing your memory footprint with Ruby
2.0 may allow you to run mare nrocesses in fewer dvnos.

If you’re not alrea Short summary: Let’s try Unicorn!
consider trying the Ciiicoiin wew sciver.

http://en.wikipedia.org/wiki/Copy-on-write
https://blog.heroku.com/archives/2013/2/27/unicorn_rails

;' A)

Only mention about GC!!1?7?
(I don’t work on GC)

o NMF>V <)L 4

Let’s consider about
GC/memory management!

Ruby 2.1 internal features

*Internal hooks for memory management

*RGenGC: Restricted generational garbage
collection

Today’s topic

Internal hooks for memory management
What's nice?

*You can collect more detailed analysis

*Examples
* Collect object allocation site information
* Collect usage of allocated objects
* Measure GC performance from outside

Internal hooks for memory management

e Added events
* RUBY_INTERNAL EVENT NEWOB

* When object is created

« RUBY_INTERNAL_EVENT FREEOB)
* When object is freed

« RUBY_INTERNAL_EVENT GC_START
* When GC is started

* RUBY _INTERNAL EVENT _GC _END
* When GC s finished

GC
Start)
Mar Sweep Sweep Sweep Sweep Sweep
Ruby 9 | > > |
<M.
Stop the
(Ruby)

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada

World

GC
End

Internal hooks for memory management
*Caution™

*You can *NOT* trace these events using
TracePoint (introduced from 2.0)

*You need to write C-ext to use them, because
events are invoked during GC, etc

Internal hooks for memory management
Sample features

*ObjectSpace. trace_object_allocations

* Trace object allocation and record allocation-site
* Record filename, line number, creator method’s id and class
* Usage:
ObjectSpace.trace_object_allocations{ # record only in the block
o = Object.new

file = ObjectSpace.allocation_sourcefile(o) #=> __ FILE
line = ObjectSpace.allocation_sourceline(o) #=>__ LINE__ -2

}

e Demonstration

Internal hooks for memory management
Postponed job

*You may want to write hooks in Ruby
— Use ‘Postponed job’

* ‘Postponed jobs’ run at same timing as finalizers
e Usage: rb_postponed job register(func, data)
* func(data)’ will be called at a safe-point

*See an sample code in “ext/objspace/gc_hooks.c”
* ObjectSpace.after _gc (start|end) = proc{GC.start}
* Proc is called after GC

(i 7]
Quoted “2.1
“2.1 Structure of VALUE and objects

In ruby, the contents of an object is expressed by a C structure,
always handled via a pointer. A different kind of structure is used for
each class, but the pointer type will always be VALUE.”

- Ruby Hacking Guide
by Minero Aoki

“21VALUEEF T OREER

ruby CIEF TS O DERFEE MR TEREL ., ROEEILEIZ A
A BHEH TR D, 1EBEIEDIFIF ISR EIZED T F(E 5757,
IR RZDIFSFEDITIDIEEMR TLEIZVALUEZE =, “

- Ruby Y—RI—R L fEEH

B RUEES

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada

RGenGC: Summary

*RGenGC: Restricted Generational GC

* New GC algorithm allows mixing “Write-barrier
protected objects” and “WB unprotected objects”

* No (mostly) compatibility issue with C-exts

*Inserting WBs gradually

* We can concentrate WB insertion efforts for major
objects and major methods

* Now, Array, String, Hash, Object, Numeric objects

are WB protected

* Array, Hash, Object, String objects are very popular in Ruby

 Array objects using RARRAY_PTR() change to WB unprotected
objects (called as Shady objects), so existing codes still works.

RGenGC: Agenda

*Background
* Generational GC
* Ruby’s GC strategy

*Proposal: RGenGC
* Separating into sunny and shady objects
* Shady objects at marking
e Shade operation

*Implementation

RGenGC: Background
Current CRuby’s GC
*Mark & Sweep

* Conservative

*Lazy sweep

* Bitmap marking

* Non-recursive marking
*C-friendly strategy

* Don’t need magical macros in C source codes
* Many many C-extensions under this strategy

Quoted “2.1”

“2.1 About Mark&Sweep GC
Mark&Sweep GC consists of mark and sweep phase.”
- Garbage Collection-Algorithms and Implementations
By Narihiro Nakamura, Hikaru Aikawa
(translated by Koichi Sasada)

“2.1

V—IOXRAL—IGCIXEFDEDBEY, v—I27r—XE
;{/—7"71 —x‘czﬁ\éﬁéf%a{,“” -

HAN—=TL 032D FILT YL EESE
By TR E, #6115

LAV X LR
oy - Ay -

J,_ij MI”" RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 38

RGenGC: Background
Mark & Sweep

Root objects

traverse

marked

marked marked COl Iect
unreachable
objects

marked marked /
free

Mark reachable
objects from root
objects

. Sweep unmarked

objects (collection
and de-allocation)

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 39

RGenGC: Background
Generational GC (GenGC(C)

*Weak generational hypothesis: Most objects die
young - Concentrating reclamation effort on the
youngest objects

*Separate young generation and old generation
* Create objects as young generation
* Promote to old generation after surviving nth GC
*In CRuby, n == 1 (after 1 GC, objects become old)

*Usually, GC on young space (minor GC)
*GC on both spaces if no memory (major/full GC)

RGenGC: Background
Generational GC (GenGC(C)

*Minor GC and Major GC can use different GC
algorithm
* Popular combination
—> Minor GC: Copy GC, Major GC: M&S

* On the CRuby’s: both Minor&Major GCs should
be M&S because CRuby’s GC (and existing codes)
based on conservative M&S algorithm

RGenGC: Background: GenGC
‘Minor M&S GC]

BMINOrGC o *Mark reachable objects
oot objects from root objects.

* Mark and promote to old

gen
@ * Stop traversing after old

traverse

objects
<t =2 Reduce mark overhead

*Sweep not (marked or
old) objects

old/ *Can’t collect Some
free unreachable objects

[Don’t collect old object]

even if it is unreachable.

42

RGenGC: Background: GenGC
‘Minor M&S GC]

RS - ¢ ohiect *Mark reachable objects
OOt ODJECtS from root objects.

* Mark and promote to old

gen
@ * Stop traversing after old

objects
<t =2 Reduce mark overhead

*Sweep not (marked or
old) objects

old/ *Can’t collect Some
free unreachable objects

[Don’t collect old object]

traverse

ignore ignore

even if it is unreachable.

43

RGenGC: Background: GenGC
Major M&S GC]

Root objects

* Normal M&S
* Mark reachable objects from

root objects
@ Mark and promote to old gen

traverse traverse * Sweep unmarked objects

collect

e Sweep all unreachable
(unused) objects

traverse

old/
free

collect

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 44

Quoted “2.1”

“2.1 The mark-sweep algorithm

From the viewpoint of the garbage collector,
mutator threads perform just three operations
of interest, New, Read and Write, which each
collection algorithm must redefine
appropriately.”

- The Garbage Collection Handbook
by Richard Jones, Antony Hosking, Eliot Moss

RGenGC: Background: GenGC
WB & Remember Set (RSet)

*Old objects refer young
Q objects

- Minor GC causes

Q Q marking leak!!

* Because minor GC ignores

referenced objects by old
Q objects

Can’t mark new object!
- Sweeping living object! (BUG)

RGenGC: Background: GenGC
WB & Remember Set (RSet)

*Add an old object into
Remember set (RSet) if an
old object refer new
objects

* At minor GC, mark all
remembered objects

*To detect [old—>new] type
references, insert “Write-
barrier”

* “Generating references” ==
“Write”

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada

Remember
set (RSet)

RGenGC: Background: GenGC
‘Minor M&S GC] w/ RSet

Root objects ZZT(ER”S‘SSr °M§rk reachable
objects from root
objects

* Remembered objects
collect are also root objects

$ e Stop traversing after old
‘d objects

*Sweep not (marked or
traverse Old) ObjeCtS

traverse

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada

RGenGC: Problem
Write-barrier (WB) and CRuby

*To introduce generational garbage collector, WBs
are necessary to detect [old—>new] type reference

* Write-barrier (WB) example in Ruby world
* (Ruby) old0[0] = newO # [oldO - newO]
* (Ruby) old1.foo = newO # [old1 - newl]

* Write-barriers miss causes terrible failure
* WB miss
—> Remember-set registration miss
— (minor GC) marking-miss - Terrible GC BUG!!

* All of C-extensions need perfect Write-barriers
* Manipulate Ruby objects in C language (in C-ext)
* C-level WBs are needed

RGenGC: Problem
Inserting WBs into C-extensions (C-ext)

* Problem: Compatibility
* Example (C) RARRAY_PTR(old0)[0] = newl
* There are Many Many C-exts’ sources like that

* CRuby core code uses C-APIs, but we can rewrite
all of source code (with terrible debugging!!)

\WWe can’t rewrite all of C-exts which are written
by 3" party

RGenGC: Problem
Inserting WBs into C-extensions (C-ext)

“Two options”

Current
[Give up on GenG(] Choice

or

[GenGC with re-writing all of C-
extensions without C-exts compatibility]

RGenGC:

Related work on Ruby’s GenGC

*Kiyama, et. al. GenGC for CRuby

e Straightforward implementation for Ruby 1.6
* Need WBs in correct places

* High development cost

e Can’t keep compatibility - Drop all C-exts

*Nari, et.al longlife GC for CRuby
* Introduce GenGC only for Node object

* No compatibility issues because C-exts don’t use
node

* Now CRuby doesn’t use many number of node
objects

* High development cost (to guarantee WBs)

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada

RGenGC:
Related work on Ruby’s GenGC

* Make interpreter with other language
infrastructures which have GC

* JRuby, IronRuby
e Can’t keep compatibility with current C-exts

*Separate core heap and CRuby C-ext heap
* High development cost

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada

RGenGC: Challenge

eHow to insert Write-barriers?
* In Ruby-core, we can chnage w/ huge effort
e However, we can’t touch existing C-exts <& Problem

*Several approaches

e Separate heaps into the WB world and non-WB

world

* Need to re-write whole of Ruby interpreter
* Need huge development effort

* WB auto-insertion
* Modify C-compiler
* Need huge development effort

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 54

RGenGC:
Challenge to introduce GenGC

*Create GC algorithm permits WB protected
objects AND WB un- protected object in the
same heap

v

RGenGC: Restricted Generational
Garbage Collection

RGenGC: Goal
Inserting WBs into C-extensions (C-ext)

“2 = 3 options”

[Give up on GenGC(]
or

[GenGC with re-writing all of C-
extensions without C-exts compatibility]

or

\
[Use RGenGC(] =

choice!l

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada

RGenGC:
Key idea

*Introduce Shady object

* In this context, “Shady” means questionable,
doubtful, etc

* Something feeling dark
« HIZ3, in Japanese

Google image search: “HIE&”

RGenGC:

Key Idea Shady: doubtful,

»Separate objects into two types questionable, .

* Shady Object: WB Unprotected An antonym of
* Sunny Object: WB Protected the word “Shady”
Shady Sunny

(‘ L] w (] \) \ (AO/\) /

*Decide this type at creation time
* A class don’t care about WB - Shady obj
* A class care about WB = Sunny obj

* Currently, most of classes DON’t care about WB,
so most of objects are created as Shady objects.

RGenGC:
Key Idea

VM
Create

*Sunny objects can change
to Shady objects
* “Shade” operation

*In the C program doesn’t
care about RGenGC

* Example
e ptr = RARRAY_PTR(ary)

0.. “,
* In this case, we can’t insert WB for ><
ptr operation, so VM shade “ary”

Shady object can’t
change into sunny object

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 60

RGenGC
Key Idea: Rule

* Mark “Shady objects” correctly
* At Marking
1. Don’t promote shady objects to old objects

2. Remember shady objects pointed from old
objects

* At Shade operation for old sunny objects
1. Demote objects
2. Remember shaded shady objects

RGenGC
Minor M&S GC w/Shady object]

15t MinorGC
Root objects

remember | *Mark reachable objects
set (RSet) from root objects

* Mark shady objects, and
remember *don’t promote* to old
gen objects

collect * If shady objects pointed
@ from old objects, then
‘ﬁ remember shady objects
mark and by RSet.

remember - Mark shady ObjECtS
every minor GC!!

travers

traverse

traverse

013 Toward efficient Ruby 2.1 by Koichi Sasada 62

RGenGC

2nd MinorGC

Remember

Root ObjeCtS set (RSet)

travers

collect

traverse

ignore

ignore

traverse

traverse

‘Minor M&S GC w/Shady object]

* Mark reachable objects
from root objects

* Mark shady objects, and
don’t promote to old
gen objects

* If shady objects pointed
from old objects, then
remember shady objects
by RSet.

—> Mark shady objects
every minor GC!!

013 Toward efficient Ruby 2.1 by Koichi Sasada 63

RGenGC
Shade operation]

*Old sunny objects - Shade
Remember ,
set (RSet) ObJeCtS
* Example: RARRAY_PTR(ary)
(1) Demote object (old - new)
*(2) Register it to Remember Set

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada

RGenGC
Timing chart
2.0.0 GC (M&S w/lazy sweep)

Rub Mark Sweep Sweep Sweep Sweep Sweep
y* . Il | > HE» 00 9
€ >
Stop the (Ruby)
World
w/RGenGC (Minor GC)
MarkSWe p Sweep Sweep Sweep Sweep

Ruby a a

e Shorter mark time (good)

(Ruby)
World e Same sweep time (not good)

* (little) Longer execution time b/c WB (bad)

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 65

RGenGC
Number of marking objects

2.0.0 GC (M&S w/lazy sweep)

Living object counts Freed object counts

&>

w/RGenGC (Minor GC) @ (b

Living object counts

E E E Freed object counts a
€ D> > >

of old (c) # of new # of freed

object object (#new) but remembered (a) # of old objecjcs by W':”
(#old) objects (b) # of shady objects pointed by old

(c) # of old but shady objects

RGenGC
Number of marking objects

w/RGenGC (Minor GC) @) ()
E Living object counts E Freed object counts
of old (c) # of new # of freed (a) # of old objects by WB
object object (#new) but remembered (b) # of shady objects pointed by old
(#old) objects (c) # of old but shady objects

Marking space Number of unused, | Sweeping
uncollected objs space

Traditional GenGC #new + (a) #new
RGenGC #new + (a) + (b) + (c) (a) + (b) Full heap

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 67

RGenGC
Discussion: Pros. and Cons.

*Pros.
* Allow WB unprotected objects (shady objects)

* 100% compatible w/ existing extensions (and standard classes/methods)
* Inserting WBs step by step, and increase

performance gradually

* We don’t need to insert all WBs into interpreter core at a time
* We can concentrate into popular (frequent) classes/methods.
* We can ignore minor classes/methods.

* Simple algorithm, easy to develop (done!)

RGenGC
Discussion: Pros. and Cons.

eCons.

* Increasing “unused, but not corrected objects
until full/major GC

 Remembered objects (caused by well known GenGC algorithm)
 Remembered shady objects (caused by RGenGC algorithm)

* WB insertion (potential) bugs

* RGenGC permit shady objects, but sunny objects need
correct/perfect WBs. But inserting correct/perfect WBs is difficult.

 This issue is out of scope. We have another idea against this
problem (out of scope).

e Can’t reduce Sweeping time

e But many (and easy) well-known techniques to reduce sweeping
time (out of scope).

Quoted “2.1”

“2.1 Character set

V4

- C Reference manual
By Samuel P. Harbison Ill, Guy L.Steele Jr.

2.1 XFEE

—DODCY—XIT7LIlFE, —DDXF =2
f/ﬁéj—?@ﬁa Thd,”

ClYTIrPLAT=a2F/L

RGenGC

mplementation

*Introduce two flags into RBasic

FL_KEEP_WB: WB protected or not protected

* 0 - unprotected - Shady object
* 1 - protected - Sunny object
* Usage: NEWOBJ_OF(ary, struct RArray, klass, T_ARRAY | FL_KEEP_WB);

* FL_OLDGEN: Young gen or Old gen?

* 0 - Young gen
«1- 0Oldgen
* Don’t need to touch by user program

*Remember set is represented by bitmaps
* Same as marking bitmap
* heap_slot::rememberset_bits
* Traverse all object area with this bitmap at first

RGenGC
Implementation: WB operation API

(7

d

*OBJ WRITE(a, &a->x, b)

* Declare ‘@’ aggregates ‘b’ o
* Write: *&a->x=b \

e Write barrier

* OBJ_WRITE(a, b) returns “a”

oldv

*OBJ WRITTEN(a, oldv, b)

* Declare ‘@’ aggregates ‘b’ and old value is ‘oldv’
* Non-write operation
* Write barrier

RGenGC

mplementation: WB operation API

*T_ARRAY
 RARRAY_ PTR(ary) causes shade operation

e Can’t get RGenGC performance improvement
* But works well ©

*Instead of RARRAY PTR(ary), use alternatives
* RARRAY_AREF(ary, n) > RARRAY_PTR(ary)[n]
« RARRAY_ASET(ary, n, obj) > RARRAY PTR(ary)[n] =
obj w/ Write-barrier
 RARRAY_PTR_USE(ary, ptrname, {...block...})

* Only in block, pointers can be accessed by ‘ptrname’ variable
(VALUE®).

* Programmers need to insert collect WBs (miss causes BUG).

RGenGC
Incompatibility

 Make RBasic::klass “const”

* Need WBs for a reference from an object to a
klass.

* Only few cases (zero-clear and restore it)

* Provide alternative APIs

* Now, RBASIC_SET_CLASS(obj, klass) and
RBASIC_CLEAR_CLASS(obj) is added. But they should be internal
APIs (removed soon).

* rb_obj_hide() and rb_obj_reveal() is provided.

RGenGC
Implementation

*RGENGC_CHECK_MODE in gc.c

e1: Enable assertions
*2: Enable “WB checking” mode

*WB checking mode
(1) do minor GC
*(2) do major/full GC

*(3) compare result with (1) and (2)
* If living objects in (2) but not living in (1) it should be BUG!!
* Not a perfect (implementation limitation), but a
good method to detect bugs

RGenGC
Implementation

*Macros in ruby/ruby.h
« USE_RGENGC

* You can enable/disable RGenGC with this macro.

* RGENGC_WB_PROTECTED ???

« RGENGC_WB_PROTECTED_ ARRAY, RGENGC_WB_PROTECTED_ HASH,
RGENGC_WB_PROTECTED STRING, RGENGC_WB_PROTECTED OBJECT,
RGENGC_WB_PROTECTED FLOAT, RGENGC_WB_PROTECTED COMPLEX,
RGENGC_WB_PROTECTED RATIONAL, RGENGC_WB_PROTECTED_BIGNUM

* Now, only supports above types (T_??7?).
e T_CLASS, T_MODULE and T_DATA is needed to support with high priority.
* You can enable/disable RGenGC for each types.

* If you have trouble with RGenGC, try to disable them.

RGenGC
Performance evaluation

e|deal micro-benchmark for RGenGC

* Create many old objects at first
* Many new objects (many minor GC, no major GC)

*RDoc
* Same RDoc generation as Ruby’s trunk

RGenGC
Performance evaluation (micro)

600000000

/\ Shorter mark time (good)
o / \ * Same sweep time (not good)

400000000

xecution time by RDTSC

300000000 —=—sweep (RGENGC)
—#&—mark
200000000 —_ /A e
o e +-—-—"/._-\ - i—e x =4

Same sweep

time ®

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
GC count

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 78

RGenGC
Performance evaluation (RDoc)

400

350

Several major/full

0 GC peaks

250
= Mark Time(ms)
£ 200 ——Sweep Time(ms)
= RGenGC/Mark Time(ms)
Faster minor ——RGenGC/sweep Time(ms)

Total GC count

is different

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 79

RGenGC

Performance evaluation (RDoc)

60000
50000
40000

€ 30000
20000
10000

0

Normal RGenGC

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada

B Total mark
B Total sweep

80

RGenGC
Performance evaluation (RDoc)

225
220
21 Impressive!!
210
205

200
195
190
185
180
175

sec

W Execution time

Of course, this is “Graph magic”.
If a students submits this graph,
his score is fail.

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 81

Normal RGenGC

RGenGC
Performance evaluation (RDoc)

250

200

150

100

50

0

Normal

About 15% speedup!

RGenGC

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada

B Execution time

RGenGC: Summary

*RGenGC: Restricted Generational GC

* New GC algorithm allow mixing “Write-barrier
protected objects” and “WB unprotected objects”

* No (mostly) compatibility issue with C-exts

*Inserting WBs gradually

* We can concentrate WB insertion efforts for major
objects and major methods
* Now, Array and String objects are WB protected

* Array and String objects are very popular in Ruby

 Array objects using RARRAY_PTR() change to WB unprotected
objects (called as Shady objects), so existing codes work well

RGenGC

Future work

*Minor GC / Major GC timing
* Too many major GC - slow down
* Too few major GC - memory consumption issue, etc

*Make more sunny objects (especially T_CLASS)
*Optimize remember set representation
*Inserting WBs w/ application profiling

* Profiling system

* Benchmark programs

* Detection system for WBs insertion miss
* RGENGC_CHECK_MODE (2, in gc.c) is not enough

RGenGC
Issues: Terminology

* Matz rejected the word “Sunny”

*“Shady” has a meaning of “questionable,
doubtful, ...”, but “Sunny” has no meaning of
against “questionable, doubtful, etc”.

Sunny
N (")

Doubtful,

guestionable, etc

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 85

RGenGC
Issues: Terminology

*This is a last presentation to use “Shady” and
l(Sunny”

*We will replace codes and documents with:

* “Shady” - “WB unprotected”
* “Sunny” - “WB protected”

*Or
. ”Shady” 9 ”Shady” (remain)
* “Sunny” = “Normal” (not shady)

If you have any idea of the words,
please let us know.

Quoted “2.1”

“2:1 Now when Jesus was born in Bethlehem of

Judaea in the days of Herod the king, behold, there
came wise men from the east to Jerusalem,”

- Gospel of Matthew

“2:1 A IIDANOATEDRIZ, AXTDNYLAL

CHENILiof-b&, BL, BHLE/1EL/-5H
T/ HLALUICENTE D/

- VEAICLBIEEE

|II

Ruby 2.1 expected “internal” features

*Sophisticated inline cache invalidation mechanism
* Memory efficient string management & Symbol GC

* Fine-grain memory protection to detect WB
Insertion miss

*Sighal thread

* More efficient inter-process migration technique
*JIT compilation for small part of Ruby code
*|ntroduce fastpath C-methods type

*|nlined Proc.call invocation

* AOT Compiler and extending “require” behavior
e Useful debugger

Sophisticated inline cache
invalidation mechanism

*From Ruby 1.9 (YARV), inline cache technique
is used in several codes
*Inline method caching < Huge opportunity
* Constant lookup

*Cache invalidation with only one variable
“global state version”

*|nvalidate inline cache, other non-related
inline caches are also invalidated

Sophisticated inline cache
invalidation mechanism

*Invalidate all classes’ method cache

Object
Redefine X, /v’
invalidate all of X Y Z
classes /\ /\
X1 X2 Z1 Z2

X1la

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada

Sophisticated inline cache
invalidation mechanism

“This patch adds class hierarchy method
caching to CRuby. This is the algorithm used by
JRuby and Rubinius.”

[ruby-core:55053] [ruby-trunk - Feature #8426][Open]
Implement class hierarchy method caching

by Charlie Somerville

Sophisticated inline cache
invalidation mechanism

*Invalid only sub-classes under effective class

Object
Redefine X, /“
invalidate X and X Y Z
X’s subclasses /\ /\
X1 X2 Z1 Z2

X1la

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada

Memory efficient string management

*Each string has their string body (space
acquired by malloc())

String

“String body”

ptr

Memory efficient string management

*For some strings have same “string body”,
they has own string body each other.

String
I
I

___ 4‘_‘_‘ I I

- > “String body”

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada

Memory efficient string management

*It can be shared by strings w/ dirty bit.

String

— Reduce memory consumption!!

“String body”
(shared by 5 places)

1 ptr

T Sharing string body is implemented now
if a string object is duped.
This technique is more aggressive approach.

Memory efficient string management

*This mechanism can work with Symbol

management
—> GC-able Symbol

String

“String body”
(shared by 5 places)

1 ptr

Quoted “2.1”

“2:1 And the heavens and the earth were finished,
and all the host of them.”

- Genesis

“2:1 COLTREME, EDHRENTLI=,”
- Bt 50

Agenda

*Ruby 2.1 Schedule

*Ruby 2.1 new “internal” features

* Internal object management hooks

* Object allocation tracing
* GC hooks

* RGenGC: Restricted Generational Garbage
Collection € Today’s main topic

*Ruby 2.1 expected “internal” features
* Sophisticated inline cache invalidation mechanism
* Memory efficient string management
* Useful debugger

summary

*We are implementing new features and
improving Ruby’s quality for Ruby 2.1

*Especially introducing “Generational garbage
collector” which I’'m working on will improve
huge performance

*Ruby 2.1 is currently scheduled on Dec 25,
2013

Thank you

Any questions?

Koichi Sasada

Heroku, Inc.
<kol@heroku.com>

1! heroku

