
Ractor on Ruby 3.4
Koichi Sasada

STORES, Inc.

Today’s topics

• What is and why “Ractor”?

• What is current situation of Ractor?

• What’s new on Ruby 3.4?

• What’s next?

Apologies
This year I was unwell for a long time, so I didn't achieve

much. For that reason, there is a lot of background talk.

Please listen to my talk as a refresher.

Koichi Sasada

• Ruby interpreter developer employed by
STORES, Inc. (2023~) with @mametter
• YARV (Ruby 1.9~)
• Generational/Incremental GC (Ruby 2.1~)
• Ractor (Ruby 3.0~)
• debug.gem (Ruby 3.1~)
• M:N Thread scheduler (Ruby 3.3~)
• …

• Ruby Association Director (2012~)

• Ruby Hack Challenge workshop (tomorrow)
• 12:00-13:30 Ask the Ruby Committers session

https://github.com/sponsors/ko1

Shortest description ever.

https://github.com/sponsors/ko1

What is and why “Ractor”?

“Ractor” is

• introduced from Ruby 3.0

• designed to enable

• parallel computing on Ruby for more
performance on multi-cores
• It can make faster applications

• robust concurrent programming
• No bugs because of object sharing

What is parallel?

• Threads of Ruby (CRuby) doesn’t run them in parallel
• Only one thread acquiring “GVL” can run at a time

• Even if the computer (CPU) has multiple cores

Thread A

Thread B

Thread C

Time

GVL

What is parallel?

• Threads of different Ractors can run in parallel
• They can utilize CPU cores on your machine

Thread A

Thread B

Thread C

Time

R1

Thread D

Thread E

R2

GVL

GVL

Takeuchi function on 4 Ractors

def tarai(x, y, z) =

x <= y ? y : tarai(tarai(x-1, y, z),

tarai(y-1, z, x),

tarai(z-1, x, y))
require 'benchmark'

Benchmark.bm do |x|

sequential version

x.report('seq'){ 4.times{ tarai(14, 7, 0) } }

parallel version

x.report('par'){

4.times.map do

Ractor.new { tarai(14, 7, 0) }

end.each(&:take)

}

end

user system total real

seq 53.674715 0.001315 53.676030 (53.676282)

par 57.916671 0.000000 57.916671 (14.544515)

x 3.7 faster!!

Write this kind of code in Ruby!!

BTW: GVL

• GVL had meant “Global/Giant VM Lock”, per VM lock
• GIL (Giant interpreter lock) in Python

• We use the term “VM” because we tried multiple VMs in one
process and wrote some academic papers
• Sub-interpreter in Python now a day

• With Ractor, GVL is not “Global”. Giant?
• Each Ractor has GVL

• The Ruby VM has many GVL now a day

• Good Valuable Lock?
• We uses the term “GVL” in C API and don’t change them ☺

• Feel free to tell me if you have a good idea what GVL stands for

Why not parallel on threads?
1. Difficulty of programming
• Writing parallel programming is too hard in general

• We need to synchronize all shared mutable objects between
threads

• On threads, it is very easy to share an object, but it is hard to
trace, furthermore we can not trace over the libraries

• It is same on current (C)Ruby’s concurrent threads, but the
context switch point is very limited, so the degree of difficulty is
better than parallel threads.

Serial programming Parallel programming
CRuby’s thread
programming

Difficulty of programming

"Why Threads Are A Bad Idea (for most purposes)" by John Ousterhout (1995)

https://web.stanford.edu/~ouster/cgi-bin/papers/threads.pdf

Why not parallel on threads?
2. Quality of the Ruby interpreter

• 2.1 Reliability of the interpreter
• (C)Ruby doesn’t allow to stop by critical error (SEGV, for example)

• Accessing all mutable objects should be thread-safe in parallel run
• Array, Hash, String, … many basic Ruby objects written in C

• Thanks to GVL, we don’t need to care such difficult things

• Ruby is OSS and development productivity is important

• 2.2 Performance of the interpreter
• Introducing thread-safety needs fine-grained locking and it introduces

overhead

BTW: Python community decided to tackle this difficult issue ([PEP 703]).

I respect the decision and I’m looking forward to see the conclusion.

https://peps.python.org/pep-0703/

Again: Why parallel thread programing is
difficult?
• Difficulty to manage shared mutable objects between threads

• Off course there are other reasons, but it is one of biggest issue.

• Ideas
• Prohibit mutable objects!

→ Erlang, Elixir, functional languages
• Trace them by type!

→ Rust and other ownership support languages
• Mange/limit mutations!

→ Clojure, transactional memory libraries
• Trace all mutation and locking by tooling

→ thread sanitizer (clang), helginrd (valgrind), …
• Prohibit sharing objects!

• → Forking processes (shell), micro-services, dRuby, Ruby MVM project, …

• Separate shareable and unshareable objects! → Ractor!!!

Ractor, an isolated object space

• Introduce Ractor as isolated object heap

Ractor 1 Ractor 2

obj
obj

obj

obj

obj
Can’t access
(read/write)

NG!!

Ractor, a better choice of thread-safety

• Split all objects into “Shareable” and “Unshareable”
• Most of objects are “Unshareable” (Array, String, …)

• Some special shareable objects
• Immutable objects

• The object is frozen, and they only refers shareable objects

• Classes/Modules

• Special cared objects such as Ractor, TVar and so on

• We only need to make shareable objects thread-safe

But wait, how to share the state…?

easy example

cnt = 0

WorkerNum.times{

Thread.new{ N.times{do_task(); cnt += 1} }

}

…

p cnt #=> Total count of “do_task()” called

Note: “cnt” should be protected by Mutex

This is why thread programming is difficult

How to share the state between Ractors?

• 3 options (but there are more)
1. Use external database (RDB, redis, etc)

2. Use “Actor” programming model (Ractor was comes
from)

3. Use “TVar”, Transactional Variable

2. “Actor” programming model
Enclose the state in the Actor

Counter
<cnt>

WorkerWorkerWorkerPlease increment the counter

main

Please get the current counter value

Here you go!

“Actor” programming model
Enclose the state in the Actor
Counter = Ractor.new{

cnt = 0

loop{

case Ractor.receive

when :get

Rator.yield cnt

when :inc

cnt += 1

end

}

}

WorkerNum.times.map{

Ractor.new{

N.times{

do_task()

Counter.send :inc

}}}

…

p Counter.send(:get).take

Using TVar – Transactional Variable

• “Transactional” is come from DB and research from STM

• Optimistic locking
• If the thread safety was broken (mutate by other threads), then roll-

back (rerun)

• Composable (nested transactions run atomically)

• ractor-tvar.gem (Advertisement)
• Transactional variable library for Ractors

• It is guaranteed to keep the mutation atomically

TVar by ractor-tvar.gem

Counter = Ractor::TVar.new(0) # 0 is init value

WorkerCounts.times.map{

Ractor.new{

N.times{

do_task()}

Counter.atomically{ Counter.value += 1 }

Counter.increment is also supported for short

}}}

…

p Counter.value

What is current situation of
Ractor?

Good news

• Ractor was released with Ruby 3.0!!

• Ractor supported debug.gem aim to support Ractor

• M:N threads for lightweight Ractors/Threads creation

• Few usage reports which achieve performance improvements

• … (and detailed additional features and improvements)

Bad news

• Ractor supported debug.gem aim to support Ractor, but
not supports yet…

• M:N threads for lightweight Ractors/Threads creation,
but not tuned yet…

• Only Few usage reports which achieve performance
improvements

• Difficulties of Ractor – We need to change the usage of Ruby

→ Not enough Ractor supporting libraries

• Quality of Ractor implementation

Strict Ractor rules to make safer
concurrent programming
• Limiting object sharing features between Ractors

• Unshareable and shareable objects
• Unshareable objects – most of objects

• Sharable objects – some special objects

• Constants (and so on) can not get/set unshareable objects by child
Ractors (= non main Ractors).

• Global variables are not accessible from child Ractors.

• …

• We need to rewrite existing libraries
• For example, Rails doesn’t run at all

• We need huge effort to run Rails on Ractors.

Simple example which doesn’t run

Ractor.new do

pp 1

end

because

the first pp require ‘pp’ library

but require on a Ractor is prohibited

Ring example benchmark results

35.61

31

2.51 2.19

0

5

10

15

20

25

30

35

40

M:N disabled M:N enabled M:N disabled M:N enabled

GC enabled GC disabled

T
im

e
 (

s
e
c
)

Creation time (sec)

Data from “M:N Thread implementation on Ruby”, PPL2024

x14
slower with GC!?

We have many issues

We need to improve step by step

What’s new on Ruby 3.4?

Off-topic
Ruby 3.4 feature: Unused block warning
Have you written such code?

p foo do

…

end

and “foo” doesn’t receive a block

it is easy to detect if foo raises an exception,

but not easy if foo change the behaver

if it accepts a block or not

Off-topic
Ruby 3.4 feature: Unused block warning
• From Ruby 3.4, if a block will be passed to a method which

doesn’t seem to use a block, show warning on “-w”

def foo

end

foo{}

#=> t.rb:5: warning: the block passed to

'Object#foo' defined at t.rb:2 may be ignored

Off-topic
Ruby 3.4 feature: Unused block warning
• There are many false positive on duck typing, so we relaxed

the warning condition: Warn when there is not a method
which has same name and accepts a block

• If you want to warn without this condition, use
Warning[:strict_unused_block] = true

def foo = nil

def "".foo = yield

foo{} #=> No warning

Require on Ractors

• “pp” is good example

• Autoload is also good example to require on Ractor

• And Ruby 3.4 can support “Require on Ractors”!!

• Issues
• $LOAD_PATH, $LOADED_FEATURES are mutable data
• Many library expect to run on the main Ractor

• STR = “str” is not allowed in non-main Ractors

• Rubygems and other many tools can run only on main ractor

• Solution
• Ask main Ractor to require and wait the result → Ractor._require()

(Child Ractor)

(Main Ractor)

Require on Ractors
Ractor._require(feature)

T/main

T/r

2. Ask to require

3. Create new thread

T/req
4. require(feature)

5. Send a require’s result

Restart main’s logic

<Wait for the result>

1. Ractor._require(feature) 6. Restart T/r with the result

Prepend Kernel#require to use
Ractor._require

Kernel.prepend Module.new do

def require(feature)

return Ractor._require(feature) unless Ractor.main?

super

end

end

and all of require(feature) checks main ractor or not

Note: prepend when the first child ractor was created

Main Ractor

Child Ractor

Issue of “timeout”

• “timeout” library uses Thead to send asynchronous exception
to the timeout thread

• Can not communicate between Ractors

Timeout
monitor
thread

Thread 1

Thread 2

Register/unregister timeout

Raise Timeout::Error if timeout occurs

Thread 3
in Ractor 2

Threads can not communicate
between Ractors

Main Ractor

“timeout”
Prepare a monitor per each Ractor
• Provide monitor threads per a Ractor

• Easy to implement

• Not introduced yet, but I hope Ruby 3.4 has this change

Timeout
monitor
thread 1

Thread 1

Thread 2

Child Ractor

Timeout
monitor
thread 2

Thread 3

Thread 4

Others

• Newly introduced methods
• Ractor.[]/[]=, not yet but hopefully
Ractor.local_storage_init

• Ractor.main?

• (Not yet) Thread supports
• Many Ractor operations (Ractor.select and so on) doesn’t

support threads (only 1 thread can run them), but it is not healthy

What’s next?

Future
GC tuning
• Ractor aware GC tuning

• Prepare enough pages for the number of Ractors

• Ractor local GC
• Need distributed GC techniques

• Need more memory vs. single heap
R1 R2

R R

Today’s topics

• What is and why “Ractor”?

• What is current situation of Ractor?

• What’s new on Ruby 3.4?

• What’s next?

Questions and feedbacks are very welcome!

Thank you for listening, Koichi

	スライド 1: Ractor on Ruby 3.4
	スライド 2: Today’s topics
	スライド 3: Koichi Sasada
	スライド 4
	スライド 5: What is and why “Ractor”?
	スライド 6: “Ractor” is
	スライド 7: What is parallel?
	スライド 8: What is parallel?
	スライド 9: Takeuchi function on 4 Ractors
	スライド 10: BTW: GVL
	スライド 11: Why not parallel on threads? 1. Difficulty of programming
	スライド 12
	スライド 13: Why not parallel on threads? 2. Quality of the Ruby interpreter
	スライド 14: Again: Why parallel thread programing is difficult?
	スライド 15: Ractor, an isolated object space
	スライド 16: Ractor, a better choice of thread-safety
	スライド 17: But wait, how to share the state…?
	スライド 18: How to share the state between Ractors?
	スライド 19: 2. “Actor” programming model Enclose the state in the Actor
	スライド 20: “Actor” programming model Enclose the state in the Actor
	スライド 21: Using TVar – Transactional Variable
	スライド 22: TVar by ractor-tvar.gem
	スライド 23: What is current situation of Ractor?
	スライド 24: Good news
	スライド 25: Bad news
	スライド 26: Strict Ractor rules to make safer concurrent programming
	スライド 27: Simple example which doesn’t run
	スライド 28: Ring example benchmark results
	スライド 29
	スライド 30: What’s new on Ruby 3.4?
	スライド 31: Off-topic Ruby 3.4 feature: Unused block warning
	スライド 32: Off-topic Ruby 3.4 feature: Unused block warning
	スライド 33: Off-topic Ruby 3.4 feature: Unused block warning
	スライド 34: Require on Ractors
	スライド 35: Require on Ractors Ractor._require(feature)
	スライド 36: Prepend Kernel#require to use Ractor._require
	スライド 37: Issue of “timeout”
	スライド 38: “timeout” Prepare a monitor per each Ractor
	スライド 39: Others
	スライド 40: What’s next?
	スライド 41: Future GC tuning
	スライド 42: Today’s topics

