
20th years of YARV
Koichi Sasada

STORES, Inc.

1

2004/01/06
Ruby-dev mailing list

Subject: [ruby-dev:22494]
[ANN] YARV: Yet another
RubyVM 0.0.0-

• New year’s holidays he has a time to hack
• He had experienced JVM impl. in C++ and

in Ruby (as his first Ruby app)
• He had studied CRuby internal, and he had

thought that he can make better VM

2

• 2004/Oct RubyConf 2004 1st YARV talk in US

• 2007/Dec Ruby 1.9.0 (dev version) released with YARV

• 2008/Dec Ruby 1.9.1 (prod. version) released with YARV

• 2018/Dec Ruby 2.6.0 released with MJIT

• 2021/Dec Ruby 3.1.0 released with YJIT and MJIT

• 2023/Dec Ruby 3.3.0 released with YJIT and RJIT

• 2024/Dec Ruby 3.4.0 will be released

A
fte

r Y
A

R
V

YARV inside

in your “ruby” command

3

Koichi Sasada

• Ruby interpreter developer employed by
STORES, Inc. (2023~) with @mametter
• YARV (Ruby 1.9~)

• Generational/Incremental GC (Ruby 2.1~)

• Ractor (Ruby 3.0~)

• debug.gem (Ruby 3.1~)

• M:N Thread scheduler (Ruby 3.3~)

• …

• Ruby Association Director (2012~)

4

https://github.com/sponsors/ko1

Shortest description ever.

5

https://github.com/sponsors/ko1

• 2004/Oct RubyConf 2004 1st YARV talk in US
• 2006/Apr Becomes a faculty member of a University

• 2007/Dec Ruby 1.9.0 (dev version) released with YARV
• 2007/Dec Completed my Ph.D. with YARV

• 2008/Mar EuRuKo 2008 @ Prague
• 2008/Dec Ruby 1.9.1 (prod. version) released with YARV

• 2012/Apr Hired by Heroku/Salesforce

• 2012/Dec Ruby 2.1 with Generational GC

• 2013/Jun EuRuKo 2013 @ Athene

• 2015/Oct EuRuKo 2015 @ Salzburg
• 2017/Jan Hired by Cookpad

• 2018/Dec Ruby 2.6.0 released with MJIT

• 2020/Dec Ruby 3.0.0 released with Ractor

• 2021/Dec Ruby 3.1.0 released with YJIT and MJIT
• 2023/Sep Hired by STORES

• 2023/Dec Ruby 3.3.0 released with M:N threads, YJIT and RJIT

• 2024/Sep EuRuKo 2024 @ Sarajevo

• 2024/Dec Ruby 3.4.0 will be released

• I changed my job, but the
work is always Ruby
implementations.

• Many opportunity to talk at
EuRuKo (4th time). I could
visit many wonderful places

6

20th years of
YARV: Yet Another RubyVM
Basic ideas

Good and bad points

Future work

7

Ruby interpreter

Ruby (Rails)
app

RubyGems/Bundler

So many gems
such as Rails, puma, … and so on.

An ordinal view of Ruby programmers
i gigantum umeris insidentes
Standing on the shoulders of giants

8

An ordinal view of MRI developers

9

Ruby
script

Parse

Compile
(codegen)

Ruby
Bytecode

Object
management

Garbage collector
Threading

Embedded
classes and methods

Bundled
Libraries

Evaluator

Gem
Libraries

AST
Abstract Syntax Tree

Operating system under the interpreter

Workflow of Ruby’s interpreter

10

Ruby
script

Parse

Compile
(codegen)

Ruby
Bytecode

Object
management

Garbage collector
Threading

Embedded
classes and methods

Bundled
Libraries

Evaluator

Gem
Libraries

AST
Abstract Syntax Tree

<Read> <Evaluate>

YARV

YARV My interest

FAQ: Why “Yet Another”?

• There were several Ruby’s virtual machines in 2004
• Rite, Byte code Ruby, …

• Only YARV completes the implementation to run Ruby

• CS people like “Yet Another” (e.g. “yacc”)

11

YARV
Basic ideas
Stack based virtual machine

Auto generation from instruction definitions

Optimizations

12

Basic idea
Stack machine
• All operations uses a stack

• Simple because no register allocation issues

• vs. register machines
• Computation uses registers

• JVM, .NET, Smalltalk VM, p-code, …

13

14

Ruby before YARV (~Ruby 1.8)

a =

Method call
+

cb

AST (Abstract Syntax Tree)Ruby program

a = b + c

a =

Method call
+

cb

a =

Method call
+

cb

15

Stack machine

Ruby program

a = b + c

getlocal b
getlocal c
send +
setlocal a

YARV Insns.

Stack

a

b

c b

c

b+c

b+c

Actual YARV insns: https://ruby.github.io/play-ruby/?action=compile

https://ruby.github.io/play-ruby/?action=compile

Basic idea
Automatic generations
• Generate many files from instruction definition (insns.def)

• VM execution code
• Complete C code [“vmgen: a generator of efficient virtual machine interpreters” by M. Anton Ertl, 2002]

• Optimized instructions

• JIT compiled code by MJIT

• VM meta data (instructions list and so on)

• Disassmeber

• Serializer

• Documents

• Designed for “easy modification”

16

Automatic generations
based on abstract instruction definitions
// insns.def

DEFINE_INSN

getlocal

(lindex_t idx, rb_num_t level)

()

(VALUE val)

{

val = *(vm_get_ep(GET_EP(), level) - idx);

RB_DEBUG_COUNTER_INC(lvar_get);

(void)RB_DEBUG_COUNTER_INC_IF(lvar_get_dynamic, level > 0);

}

// simplified automatic generated vm.inc

INSN_ENTRY(getlocal)

{

lindex_t idx = (lindex_t)GET_OPERAND(1);

rb_num_t level = (rb_num_t)GET_OPERAND(2);

const bool MAYBE_UNUSED(leaf) = INSN_ATTR(leaf);

VALUE val;

ADD_PC(INSN_ATTR(width));

val = *(vm_get_ep(GET_EP(), level) - idx);

RB_DEBUG_COUNTER_INC(lvar_get);

(void)RB_DEBUG_COUNTER_INC_IF(lvar_get_dynamic, level > 0);

TOPN(0) = val;

END_INSN(getlocal);

}

(Instruction operands)
(Popped values from stack)
(Push values to stack)

<push to stack code>

<body>

<fetch operands>

17

Automatic generations
based on abstract instruction definitions
• Easy to modify and introduce instructions

• No need to write boring code like stack pushing and popping
• No need to modify disassembler and so on

• Easy to introduce optimization
• Operands unification (specialization)

• getlocal 1 -> getlocal1

• Instructions unification
• putnil ; setlocal → putnil_setlocal

• Stack caching [“Stack caching for interpreters” by M. Anton Ertl. S, 1995]

• Caching nth top of stack on CPU registers

• Easy to select instruction dispatch method
• switch/case in standard C
• Dynamic threading with gcc extension

18

Basic idea
Optimizations
• Ruby specific characteristics we need to know

• The nature of dynamic

• Many method invocations

• Many method invocations with a block

19

Optimization
The nature of dynamic – The limitations
• Add and modify the definitions while executing the program

• All class/method definitions are dynamic changes in Ruby

• Meta-programming features like Class.new, define_method, …

• Many dynamic code execution like eval, load, …

• Limitation on optimization
• “1 + 2” can returns anything by redefinitions

20

Optimization
Many method invocations
• Most of operations are abstracted by method dispatch

• Accessing instance variables (obj.foo)

• Accessing Array (Array#[])

• …

• So we need to improve the performance of it

• Approaches
• Method caching ([My EURUKO2015 talk])

• Caching the method body

• Caching the method invocation function

• Specialized instructions
• Introduce special instructions for some methods

21

Optimization
Many method invocations with a block
• With block, local variables should be saved correctly

(escaping) in heap
• def f(&b)=b; def g(i)=f{p i}; …; g(0).call

• However, most of case the escaping is not needed
• path = …; open(path){…}

• YARV delayed the escaping if it is needed
• Remain all local variables on a stack

• Escape all accessible local variables when Proc is created

• This technique improves the performance

• This technique introduces huge complexity

22

Other optimizations on YARV

• Dynamic dispatch for VM instruction dispatch

• Peephole optimizations

• No penalty “rescue/ensure” execution

• Inline constant cache

• Deduplicate frozen literal objects

• Lazy Proc creation for a block parameter

• On the fly trace instruction insertion

• Support dumping and loading instructions

• …

23

Good and Bad points
My achievements and regrets

24

Good achievement
Define how to run Ruby in instructions
• Defining “Ruby” with stack machine instructions

• Ruby has many specifications, such as complex method and block
parameters, complex flow control mechanism, special cases for the
“ease of use” and so on

• Before YARV, nobody had known which instructions are needed to
represent Ruby’s flexible (cursed as VM implementor perspective)
functionalities completely

But no friend to interpreter developers
25

Good achievement
Define how to run Ruby in instructions
• Many optimizations are allowed such as I listed before

• Some tools relies on it
• YJIT/MJIT

• Typeprof v1

• debug.gem

• …

26

FYI: Method parameters

• def f(m1, o1=…, *r, p1, k1:…, rk1:, **rkw, &b)
• m1: mandatory parameter(s)
• o1: optional parameter(s)
• r: rest parameter
• p1: post parameter(s)
• k1: keyword parameter(s)
• rk1: required keyword parameter(s)
• rkw: rest keyword parameter
• b: block parameter

• Other specs on method parameters
• Anonymous parameters (…, *, **, &)
• def f(_, _, _) = nil

• def f((a, b)) = nil

27

FYI: Block parameters

• iter{|m1, o1=…, *r, p1, k1:…, rk1:, **rkw, &b; l1|
• Can you explain what happens?

• It depends on how to yield the block
• def iter = yield(expr)

• The flowing code has different meanings
• iter{|m1|}

• iter {|m1,|

28

FYI: Readable instruction names of VM

• “getlocal” instead of magical naming like “gl”
• I frustrated to read magical assembly language

• There is no storage limitation now a day

29

Bad point
Not well-defined instructions
• JVM and other VMs defines instructions

• Well-considered instructions

• Many tools assume this specification

• Compatible Difficult to change

• YARV is designed as “easy-to-change”
• “We can change if it is not good”

• Not well-considered, not compatbile

• Not enough “foundation” for tools
• In fact, YJIT relies on current specifications, so it is hard to modify

now a day

30

BTW why no JIT compiler from Koichi?

• I don’t like to write assembly directly (hard for me :p)

• I had thought JIT was not valuable to pay an effort more
• Planned and there are some JIT compiler proposals with C compiler but

only in academic papers
• JIT compiler only speed up n% (n<10? low score) on real application
• GC was huge overhead (before generational GC)
• Need an effort about and it is hard with limited development resource

• Support multiple CPU architectures
• Continuous maintenance
• Catch up VM and other changes

• Surprised YJIT team did it, and I respect the achievements

31

FAQ: Why VM? Why not JIT?

Quoted from https://pliss.org/2023/slides/interpreters-everywhere-and-all-the-time.pdf by Stefan Marr, 202332

https://pliss.org/2023/slides/interpreters-everywhere-and-all-the-time.pdf

FAQ: Why VM? Why not JIT?

Quoted from https://pliss.org/2023/slides/interpreters-everywhere-and-all-the-time.pdf by Stefan Marr, 202333

https://pliss.org/2023/slides/interpreters-everywhere-and-all-the-time.pdf

Good achievements
Optimize method dispatch
• Inline method caching

• Huge optimizing effort
• [K.Sasada: Lightweight Method Dispatch on MRI, EURUKO 2015]

• Rewriting several times
• Invalidation algorithm

• Ractor-safe (multi-thread safe) algorithm

34

Bad: No method inlining

• To eliminate the method dispatch overhead, introducing
method inlining is straightforward approach, but not yet
• def foo = nil; foo(); foo(); foo #=> no-op code

• Because it is hard to handle exceptional cases
• Getting bactrace information

• Exception handling

• …

• YJIT does it for some cases

• In future, even on VM we can do more

35

Good achievement
Optimization: Specialized instructions
• Introduce special instructions for some methods

• Lightweight and frequent built-in methods
• We can omit general method invocation overhead

• About 26 instructions
• Integer#+, Float#+, String#+, …

• Array#[], Hash#[], …

• String#empty?, String#size, Array#size, Object#nil?, …

• Check redefinitions each time

• Good: Easy to implement and huge performance impact
• 2004/01/11 [ruby-dev:22565] 3x faster on fib

36

Specialized instructions
An example of #+
vm_opt_plus(VALUE recv, VALUE obj)

{

if (FIXNUM_2_P(recv, obj) &&

BASIC_OP_UNREDEFINED_P(BOP_PLUS, INTEGER_...)) {

return rb_fix_plus_fix(recv, obj);

}

else if (FLONUM_2_P(recv, obj) &&

BASIC_OP_UNREDEFINED_P(BOP_PLUS, FLOAT_...)) {

return DBL2NUM(RFLOAT_VALUE(recv) + RFLOAT_VALUE(obj));

}

else if …

else // normal method dispatch

}

37

Specialized instructions
Bad: Poor extensibility
• “Lightweight and frequent built-in methods”

• How lightweight? How frequent? It depends on the app

• How many instructions can we add?

• Why not user defined methods?

• Slows down other methods
• UserDefinedClass#+

• Future possibilities
• Introduce more general framework to by-pass general method

invocation

• Inlining lightweight methods with JIT

38

Good and Bad
Block management
• Good achievement: Lazy Proc creation on method call with

block. It is one of YARV’s invention
• Calling a method with a block is faster as a normal method dispatch

• Bad point: Not enough optimizations for block dispatch
(yielding a block)
• Method dispatch is well optimized, but…

• “Block dispatch” (yielding a block) code is complicated
• Do you know the specification of block’s parameters of Ruby? It is nightmare.

• And not well optimized

→ Rooms for easy performance improvement

39

Good and Bad
Handle instructions
• Good achievement: Providing ways to handle instructions

• RubyVM::InstructionSequence#disasm #=> String

• Return human readable instruction sequence for debugging

• RubyVM::InstructionSequence#to_a #=> Array

• Easy to handle by Ruby

• No loader in default because there is no verifier yet

• RubyVM::InstructionSequence#to_binary #=> String

• Fast loading representation

• bootsnap uses it

• Good achievement: prelude.rb
• Support writing built-in methods in Ruby (not in C)

• Embedding instructions in bytes acquired by “to_binary”
40

Quoted from “Future of Ruby VM” by Koichi Sasada 41

Good and Bad
Handle instructions
• Bad: Need to “load” at boot time

• Loading binary at boot time
• Now it is not an issue because only a few methods are written in Ruby

• Run class/method definitions in Ruby

• Future possibilities
• We can make lazy loading

• Remain built-in methods in bytes and load “when it is called”

• All gems for an application can be packed into one binary and utilize
lazy loading technique to improve boot time

42

Implementation technique
Lazy loading

• Load bytecodes on demand

• Make “unloaded” empty BC
• Points compiled code

• Load bytecode when it is
needed

• To execute BC1, empty BC2
and BC3 are created, BC4 and
BC5 is not created completely

BC1

BC2
(Unloaded)

BC3
(Unloaded)

Ruby script

Compiled
code

BC1
(loaded)

BC2
BC3
BC4
BC5
…

Quoted from “Design of Compiled Code on Ruby Interpreter” by Koichi Sasada, 2015 43

Future work

• Further optimizations
• Method inlining

• Optimize “yield”

• Faster bootstrap by pre-compiled code with lazy loading

• Flexible JIT compiler
• Easy development

• Faster bootstrap

44

Research project
Flexible JIT compiler
• Inherit YARV’s “easy modification” design

• Challenges
• Support all Ruby’s specifications

• No duplicate definitions

• Fast runtime performance

• Fast warmup time

• Organize a research team

45

Look back 20 years

• I got a happy chance to participate Ruby development
• Many interesting hacking topics: VM, GC, Thread

• Thanks to Ruby’s architecture knowledge I can try many hacks

• Great experience and life events
• Many conferences

• Got job(s. 4 jobs!)

• Got married and got children

• I can only have gratitude for happy 20 years

46

Conclusion

• YARV development in 20 years
• There are many achievements and regrets

• Rooms to improve more

• Thank you for using Ruby/YARV

47

	スライド 1: 20th years of YARV
	スライド 2
	スライド 3
	スライド 4: Koichi Sasada
	スライド 5
	スライド 6
	スライド 7: 20th years of YARV: Yet Another RubyVM
	スライド 8: An ordinal view of Ruby programmers
	スライド 9: An ordinal view of MRI developers
	スライド 10: Workflow of Ruby’s interpreter
	スライド 11: FAQ: Why “Yet Another”?
	スライド 12: YARV Basic ideas
	スライド 13: Basic idea Stack machine
	スライド 14: Ruby before YARV (~Ruby 1.8)
	スライド 15: Stack machine
	スライド 16: Basic idea Automatic generations
	スライド 17: Automatic generations based on abstract instruction definitions
	スライド 18: Automatic generations based on abstract instruction definitions
	スライド 19: Basic idea Optimizations
	スライド 20: Optimization The nature of dynamic – The limitations
	スライド 21: Optimization Many method invocations
	スライド 22: Optimization Many method invocations with a block
	スライド 23: Other optimizations on YARV
	スライド 24: Good and Bad points
	スライド 25: Good achievement Define how to run Ruby in instructions
	スライド 26: Good achievement Define how to run Ruby in instructions
	スライド 27: FYI: Method parameters
	スライド 28: FYI: Block parameters
	スライド 29: FYI: Readable instruction names of VM
	スライド 30: Bad point Not well-defined instructions
	スライド 31: BTW why no JIT compiler from Koichi?
	スライド 32: FAQ: Why VM? Why not JIT?
	スライド 33: FAQ: Why VM? Why not JIT?
	スライド 34: Good achievements Optimize method dispatch
	スライド 35: Bad: No method inlining
	スライド 36: Good achievement Optimization: Specialized instructions
	スライド 37: Specialized instructions An example of #+
	スライド 38: Specialized instructions Bad: Poor extensibility
	スライド 39: Good and Bad Block management
	スライド 40: Good and Bad Handle instructions
	スライド 41
	スライド 42: Good and Bad Handle instructions
	スライド 43: Implementation technique Lazy loading
	スライド 44: Future work
	スライド 45: Research project Flexible JIT compiler
	スライド 46: Look back 20 years
	スライド 47: Conclusion

