Parallel programming
in Ruby3

i

Cookpad Inc. COOkpad

<kol@cookpad.com>

Today's talk

Ruby 2.6 updates of mine

Introduction of Guild
* Design
* Discussion

I mplementation

* Preliminary demonstration

Koichi Sasada
http://atdot.net/~ko1/

*|S a programmer
« 2006-2012 Faculty
¢« 2012-2017 Heroku, Inc.

« 2017- Cookpad Inc.
« Job: MRI development

« Core parts
« /M, Threads, GC, etc

cookpad

Koichi Sasda ——— ~ N e
| ‘ = . ’ . v a—

<.

youngest attendee of xR

" Y9018

Rails Girls Tokyo 10t \ Reils Girls O P -
@Cookpad Tokyo office

is a father of the &\ =3

My achievements for Ruby 2.6

«Speedup Proc#call” --- x1.4 improvements
[Bug #10212].

«Speedup block.call” where block is
passed block parameter. [Feature #14330]
(x2.62).

»Introduce Transient heap [Bug #14858]

https://bugs.ruby-lang.org/issues/14858

Transient heap

 Manage heap for young memories
*vs. malloc heap

e malloc()/free() is heavy operation and introduce
memory fragmentation issue and theap solves it.

« Using Generational copy GC algorithm w/ MRI
specific hack

 Array, Object (user defined class), Struct and
small Hash objects use theap now

e Support String is desired, but too difficult

Transient heap
Array creation (loop{Array.new(n))

Array with 0..3

M
o

elements don’t
use theap

A A /\ /\ /\/\-\/\4/\, x1.5

N

E
©
O
o
2 15 -
£ NV
S 9 x1.0
-§ ‘\0/
([@X
>
5 05
<))
([@X
w

0

0 5 10 15 20 25 30 35

Array.new(x)

Transient heap
Small hash creation (loop{h = {---}})

3.5
o
£ 3 >8 Hash
g - objects don’t
. use theap
i
(@X
=
o 15 <
©
o 1
>
@
9 0.5
w
0
0 1 2 3 4 5 §) I 3 9 10

of Hash elements

Ruby 2.6: Transient heap
Summary

e Transient heap is new memory hack
« Generational Copy GC technique
 MRI specific hack to keep compatibility

*Your application can improve performance on
Ruby 2.6
* Microbenchmarks show good improvements.
e x1.5 - x2.0 faster for creation & collection

« Unfortunately, discourse rails benchmark doesn't
show clear perf. improvements

Parallel programming
in Ruby3
with Guild

Koichi Sasada g

Cookpad Inc.
<kol@cookpad.com> cookpad

1L,DR

»Guild is new concurrent abstraction to force
no-sharing mutable objs for Ruby 3

» Guild specification is not fixed yet
«Guild implementation is not mature (PoC)
Your comments are highly welcome!!

Sackground of
Guild

Motivation

Productivity (most important for Ruby)

« Thread programming is too difficult because sharing
mutable objects

- Correct/safe concurrent programs easily is important

Performance by Parallel execution

« Utilizing Multi/many CPU cores is important for performance

RubyKaigi2016 (and RubyConf 2016)
Proposal

Guild: new concurrency abstraction for Ruby 3

* |[dea: DO NOT SHARE mutable objects between Guilds
— No data races, no race conditions

Replace Threads to Guilds

Design of
Guild

(Guilds, Threads and Fibers

«Guild has at least one thread (and a thread
has at least one fiber)

Guild Guild
Thread Thread hread
Fiber = Fiber

Fiber river

Threads in different guilds
can run in PARALLE]

* Threads in different guilds can run in parallel

* Threads in a same guild can not run in parallel
because of GVL (or GGL: Giant Guild Lock)

GlTl Acquire GGL
Gl 2 Acquire GGL

G2:T3 m—)

Making Guilds

gl = Guild.new do
exprl
end
g2 = Guild.new do
expr2
end
Two new Guilds and Threads are created
exprl and expr2 can run in parallel

Inter-Guild communication

Share only “shareable” objects

Guild 1

normal
mutable

obj Shareable

Guild 2

Shareable

normal
mutable
obj

Design “shareable” and "non-sharable”

*You can enjoy usual mutating
programming without any thread-safe
concerns because we can't share mutable

O
S

njects between Guilds. They are “non-

narable”.

In other words, you can’t make thread-
unsafe (data-racy) programs on Guilds.

Design “shareable” and "non-sharable”

«On concurrent programs, most of objects are not
shared (thread-local)

* Tons of local objects and a few sharing objects
*You only need to care about a few sharable objects

e o Y e
e

N
sharable

Design “shareable” and "non-sharable”

Non-shareable objects == most of objects
« Most of mutable objects (String, Array, --*)

« They are member of only one Guild
o |f you use only 1 Guild, it compatible with Ruby 2

Guild 1 Guild 2

NG!!

(read/write)

Design “Shareable”™ and "non-sharable”

*Shareable objects

(1) Immutable objects (Numeric, Symbol, --*)
« (2) Class/Module objects
*(3) S
- (4

necial mutable objects
) Isolated Proc

e |mportant invariant

 Sharable objects only refer to sharable
objects

Shareable objects
(1) Immutable objects

- Immutable objects can be shared with any guilds
« Because no mutable operations for them

* “Immutable” = “Frozen”
eal = [1, 2, 3].freeze:alis Immutable
32 = [1, Object.new, 3].freeze:alis notlImmutable
 Maybe we will introduce deep freeze feature

 Example of immutable objects
« Numeric objects, symbols, true, false, nil are immutable

« Frozen string objects are immutable (if they don’t have
instance variables)

Shareable objects
(2) Class/Module objects

« All objects (including any sharable objects) point to
own classes

e Good:

« Easy Implementation and good communication performance
 Sharing class/module objects makes program easier

e Bad:

« They can point to other mutable objects with Constants,
@@class variable and @instance variables

class C

Const = [1, 2, 3] # Const points a mutable
array

end
We will introduce special protocol for them

Shareable objects
(3) Special mutable objects

e Introduce shared/concurrent data structure
« Shared hash, array, ---
 Software transactional memory (from Clojure, --+), -+
« Guild objects and so on

* They require special protocol to force
synchronization explicitly

* They can't mutate without synchronizations.
e Easy to make correct concurrent programs

« Compared with normal Array, Hash, -+ they should
require special synchronization protocol to access

S

nareable objects

(£

*Norma
with oL

PrOCH]

) Isolated Proc

Proc can point to mutable objects
ter local variable (free-variables)

a = |]; Proc.newi{p a}.call

ntroduce Isolated Proc (made

outer variables

a = []; Proc.new{p a}l.isolate.call
#=> RuntimeError (can’t access a)

Y

solate) which is prohibited to access

Shareable objects
(4) Isolated Proc

Initial block for Guild is isolated proc
gl = Guild.new do
exprl # Make isolated block and invoke
end
g2 = Guild.new do
p gl #=> RuntimeError (can’t access “gl”)
because block is isolated

end

-Yl: Other languages using similar ideas

e Similar to Guild
« Racket: Place (imm. or special mut. values)
« Kotlin/Native: Worker (check ownership)
 Almost isolated

« Shell script: Process (copy byte stream)

« JavaScript: Worker

*Everything immutable
*Erlang, Elxir: Process

Inter-Guild communication AP

« Actor model, send/receive semantics
 Not fixed yet (discuss later)

« Destination addresses are represented by
Guild itself like Erlang/Elixir processes

-Sendin}g shareable objects megns sendin%
only reterences to the objects E3I|ghtvve|gh)

 Two methods to send non-shareable objects
. glg COPY
2) MOVE

Sending objects between Guilds

gl

n

¥

Guild.new do # create Isolated Proc
Guild.receive
fib(n)

Guild.parent << r

end

gl << 30 # or gl.send(30)
p Guild.receive #=> 1346269

Sending shareable objects

g2 << o0l ol =Guild.receive

03

02:Data 03:Data

Sending non-shareable objects
(1) Send by Copy

g2 << ol 0l = Guild.receive

02 02
03 03

02:Data 02:Data

~__ O3:Data O3:Data

Sending non-shareable objects
(?) Send by Move

g2.move(ol) 0l =Guild.receive

02

03

02:Data

Sending non-shareable objects
(?) Send by Move

g2.move(ol) ol = Guild.receive

Guildl GuildZ

From Guild1l perspective, 03:Data
sent objects are invalidated

02:Data

Sending non-shareable objects
(?) Send by Move

on't access sent objects after

o|f we C

sendir
cases)

g them (and there are mar
. we can send them faster

Examples

 Huge string data
«|/O objects (send request I/0 to workers)

y such

Summary of sharable/non-sharable objects
with copy/move operations

 Non-sharable objects
« Normal mutable objects (like String, Array,)

* Only one Guild can access such objects == membership
 We can send them by COPY or MOVE

« Shareable objects
« Several types of shareable objects
 They requires special synchronization protocol to mutate them
« We can share them between Guilds by sending references

Mutable objs are NOT shared accidentally as Thread
— Safe concurrent programming

Discussion:
How to represent communication channel?

* Actor model
e Destination is specified by a Guild
*gulild << ob]
 Erlang/Elixir, -

e CSP model

» Destination is specified by a channel
*ch << obj
» Go, JavaScript, Kotolin/native, Racket, ---

* They have advantages and disadvantages---

Retrieve multiple channels

Sometimes we need to manipulate with
multiple channel

« Data channel and control channel

* Monitoring channel for child Guilds

How to provide APIs to support it?

G0 language goroutine and channels

https://tour.golang.org/concurrency/5

select {

case c <- X:
Xy Y = Y, Xty

case <-qgquit:
fmt.Println ("quit")
return

https://tour.golang.org/concurrency/5

-rlang/Elixir Process

https://elixir-lang.org/getting-started/processes.html

lex> receive do

L > {:hello, msg} —-> msg

> {:world, msg} —-> "won't match"
...> end

https://elixir-lang.org/getting-started/processes.html

JavaScript Worker and MessageChannel

// https://developer.mozilla.org/en-US/docs/Web/API/MessageChannel

var channel = new MessageChannel();
var output = document.querySelector('.output’);

var iframe = document.querySelector('iframe’);

// Wait for the iframe to load

iframe.addEventListener("load", onLoad);

function onLoad() {
// Listen for messages on portl

channel.portl.onmessage = onMessage;

// Transfer port2 to the iframe
iframe.contentWindow.postMessage('Hello from the main page!', '*', [channel.port2]);
}
// Handle messages received on portl
function onMessage(e) {
output.innerHTML = e.data;
}

https://developer.mozilla.org/en-US/docs/Web/API/MessageChannel

Racket place

; https://docs.racket-lang.org/reference/sync.html#%28def. %28%28quote. ~23~25kernel%29. handle-evt$29%29
> (define msg-ch (make-channel))
> (define exit-ch (make-channel))
> (thread
(A ()
(let loop ([val 0])

(printf "val = ~a~n" val)
(sync (handle-evt
msg-ch

(A (val) (loop wval)))
(handle-evt

exit-ch

(A (val) (displayln wval)))))))

https://docs.racket-lang.org/reference/sync.html#%28def._%28%28quote._~23~25kernel%29._handle-evt%29%29

Multiple channels tor Actor model

g2 = Guild.new({

« Support “Tag” (shows channel) cont = true

while cont

* guild.send to(:data, obj) Guild.receive (:data, :ctrl){|tag, obj|
* guild.send (obj) send to the oose tzgt
when :data
default tag cale (obi)
e Receive with multiple tag when =Ct;l,
case ob]
* Guild.receilve (tagl, tag2, when :exit
..){|ltag, obj| ..} cont = false
else
raise "unknown"
end
end

}

end

Multiple channels for CSP model

g2 = Guild.new(data ch, cntl c¢){|d ch, c ch]
cont = true

 Making channels explicitly while cont

wait for multiple channel

 Send to a channel Guild::Channel.receive(d ch, c ch){|ch, obj|

: case ch
ch << Obj when d ch
« Receive with multiple calc (obj)
h | when ¢ ch
channels case obj
* Guild: :Channel.receive (when :exit
Chl, Ch2,) { |ch, ij | cont = false
else
-} raise "unknown ctrl: #{obj}"
end
end

end

Guilc
mplementation

Preliminary implementation includes many bugs, performance issues.
https://github.com/kol/ruby/tree/guild

https://github.com/ko1/ruby/tree/guild

Guild context

«Before Guild
/M -> *Threads -> *Fibers

e After Guild
/M -> *Guilds -> *Threads -> *Fibers
* Introduce rb guild t.

Introduce synchronizations

Before Guild

« Multiple threads cannot run simultaneously

e After Guild

« Run (native) threads in parallel

*Need to introduce many synchronizations
* Introduce VM-wide locks for VM-wide resources
|t is the multi-thread programming!!

Garbage collection

«Stop all Guilds (threads) at GC process

GC process

G 1 T 1 F eaquuseest > —

G3:T3 s —

Implementation is not completed

e Features
« Fix GC bug
 Prohibit sharing non-sharable objects

 Introduce synchronizations to protect VM-wide
resources (process-global)

 Introduce “sharable” object protocols

e Performance

* Reduce synchronizations
e Per Guild Garbage collection
 Introduce new “C API” to reduce TLS access

-uture optimizations

° KO i C h i S a S a d a et a | - A n Vol. 48 No. SIG 0(PRO 34) WERELLBXE: JOyS5I VY 2007
’ | n | |
| m p | e m e ntati O n Of Pa ra | |e| Ruby iR~V YARV IZBIF A ETAL v FDFELE

gEH #H— T W XK 7 AR
Threads for YARV: Yet Another ME KR w %

ERXTIEAY ') 7+EE Ruby BRET > > YARV: Yet Another RubyVM 12617 dUHE

R u b yV I\/I 2 O O 7 ALY I:’i&i;!gl!'mist:*u‘\rﬂ'\'é. I(ul.v_:;{rd)f}t\fTén\atizé‘ilf’t’l:ii*;ﬁ.énru

3705 LBETHS. Ruby DFROVEDITIALFALY FTOTFI7ITH/BLTLS E

WHIRASHDIN, REECHAIATLD Ruby RERZBEGEEHILSH, TATA-—FLAL
TALyY FHBERT>TLS. LAL, COALY FRBFETR, REFTJOoyILTLES LR

[) T h ey | n tro d u Ce d S eve ra | HCEBLALTERTERL, BHHEBISOTERAL v FOBNEFI & DEMEALAT
FRVWEENMENHD. TLT, RERELHRREFPO Ruby BER YARV IZEVT, 0S$3
ATFVBEIZE>TRRAZADIFMNTATAL Y FEFATIAL Y FAERREREL, BBA
Ly FORMRFTERRLE. BHECH-->TR, BVLCRABOENSDRTHIH, FI-HHR

optimization techniques to reduce
synchronizations

DPLTOREERR, ALy FOENRFTICEI>TRLOALERALIIDVTHELLEBRERRD.

An Implementation of Parallel Threads for YARV: Yet Another RubyVM

KoIlcHI SASADA ., YUKIHIRO MATSUMOTO ,"* ATSUSHI MAEDA 1
and MITARO NAMIKI

In this paper, we describe an implementation of parallel threads for YARV: Yet Another
RubyVM. The Ruby language is used worldwide because of its ease of use. Ruby also sup-
ports multi-threaded programming. The current Ruby interpreter controls all threads only in
user-level to achieve high portability. However, this user-level implementation can not sup-
port blocking task and can not improve performance on parallel computers. To solve these
problems, we implement parallel threads using native threads provided by systems software
on YARV: Yet Another RubyVM what we are developing as another Ruby interpreter. To
achieve parallel execution, correct synchronizations are needed. Especially, C extension li-
braries for Ruby which are implemented without consideration about parallel execution need
a particular scheme for running in parallel. And we also try to reduce a number of times
of synchronization. In this paper, we show implementations of these schemes and results of
performance improvement on parallel threads execution

Naming ot “"Guild”

Why “Guild™?

e Prefix should be different from “P”
(Process), “T" (Therad) and “F” (Fiber).

Ownership can be explained with the word
“Membership”.
« All (normal) objects belong to one Guild.
e Easy to explain “Move” semantics

Any problem?

* “Move” operation is not so popular operation
(most of case “copy” is enough)

* No other languages use this terminology
 Naming is important

* Just now “Guild” is a code name of this
project

Demonstrations

Demonstration (on 40 vCPUs)

«CPU 40 virtual CPUs (2 x 10 x 2)
e Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz

e x10 cores
e X2 hyper threading

ex?2 CPUs

Ubuntu 16.10
* Already EOL ®

Demonstration (on 40 vC

\Workload

PUs)

 Calculate fib(23) x 100 000 times
» Serial version: 100 000.times{ fib(23) }
e Guild version:

Bl

FibHub
Guild

—=

!

prbor

load balancing

worker

fib

We can change
of workers

https://gist.github.com/ko1/e5327126a77e078a0ffdf005013592ea

FIBHUB = make worker hub do |n|
[n, fib(n)]
end
library
def make worker hub n workers = WN, &worker proc

pp WN: n workers if SVERBOSE

Guild.new(n workers, worker proc) do |nw, wp|
gulilds = nw.times.map do # I\IIake Worker gL"IdS
Guild.new do
while data = Guild.receive
result = wp.call (data)
Guild.parent << [:ans, Guild.current, result]
end
end

end

requests = []

while true

cmd, sender guild, data = *Guild.receive

case cmd

when :req # Receive a request from master

if g = gquilds.por # Send a task
g << data # if an idle worker is available

else
requests << data

end

when :ans # Receive an answers from workers
Guild.parent << data # Send an answers to master

if req = requests.pop

Send a remaining task
to the worker if exists

sender guild << req
else

guilds << sender guild
end

end

You don’t need to write Ssuch common code
but we provide some kind of a framework

https://gist.github.com/ko1/e5327126a77e078a0ffdf005013592ea

fib(23) with # of Guilds on 40 vC

20
15
10
5
0

0

20 40 60 80
of Guilds

~Speedup ratio (compare with serial execution)

P Us

100

Demonstration (on 40 vCPUs)

\Workload

e Calculate fib(n) x 100 000 times (0 =n
« Serial version: 100 000.times{ fib(23) }
e Guild version: 40 Guilds

/ fih

HbHub ﬂE
Guild " —
fib
load balancmg\ worker

IM

30)

-xecution

time (sec) of fib(n) x 100 000

with 40 GL

15000

10000

Sec

5000

0

ilds on 40 vCPUs

12,896.23 sec
=~ 3.5 hours

791.2541 sec

=~ 13 minutes
—0 \7Vﬁﬂ_v_v_,_,_._._._4_—o——0’°/.
H 10 15 20 2bh 30 35
n for fib(n)

—~real (sec) real-serial (sec)

fib(n) with 40 Guilds on 40 vCPUs

18
17
16
15 fib(9): about 100 recursive calls
13

Slower Faster

Speedup ratio compare
with serial execution

OFRLPNWPAOITOY N0 W

0 H 10 15 20 2H 30 35
n for fib(n)

Demonstration (on 40 virtual CPU)

\Workload

e Calculate wordcount for files and find a file
which contains maximum number of words.

e on “ruby/test/**/*” files (1,108 files)

def word count file
r = File.read(file) .b.upcase.split (/¥W/) .unig.size
end

Demonstration (on 40 virtual CPU)

\Workload

e Calculate wordcount for files and find a file
which contains maximum number of words.

e on “ruby/test/**/*” files (1,108 files)

WCHub
Guild

—=

WC

traverse directories, load balancing
correct wc results,
and calculate maximum

/ W

prbor

WC

worker

We can change
of workers

Demonstration (on 40 virtual CPU)

10
=
= 6.136364
s © 5
L= (€]
S o
3 = 1.736429 1.652815 2.473468
: B
S o | -
Serial 1 Guold 2 Guild 40 Guilds

It is SLOW with multiple Guilds
because GC/object allocation require naive global locking
(current implementation limitation) and huge contentions.

Today's talk

Ruby 2.6 updates of mine

Introduction of Guild
* Design
* Discussion

I mplementation

* Preliminary demonstration

Thank you for your attention

Paralle] programming

in Ruby3

with Guild
Cookpad Inc. COOkpad

Koichi Sasada
<kol@cookpad.com>

Pros./Cons. Matrix
Process Guild Thread Auto-Fiber

Available Yes No Yes No Yes
Switch on Yes Yes Yes No No

time

Switch on I/O Auto Auto Auto Auto No
Next target Auto Auto Auto Auto Specify
Parallel run Yes Yes No (on MRI) No No
Shared data N/A (mostly) N/A Everything Everything Everything
Comm. Hard Maybe Easy Easy Easy Easy
Programming Hard Easy Difficult Easy Easy
difficulty

Debugging Easy? Maybe Easy Hard Maybe hard Easy

difficulty

