
Parallel programming
in Ruby3

with Guild
Koichi Sasada

Cookpad Inc.
<ko1@cookpad.com>

Today’s talk

•Ruby 2.6 updates of mine

• Introduction of Guild
•Design
•Discussion
• Implementation
•Preliminary demonstration

Koichi Sasada
http://atdot.net/~ko1/

• is a programmer
• 2006-2012 Faculty
• 2012-2017 Heroku, Inc.
• 2017- Cookpad Inc.

• Job: MRI development
• Core parts

• VM, Threads, GC, etc

Koichi Sasda

is a father of the
youngest attendee of

Rails Girls Tokyo 10th

@Cookpad Tokyo office

My achievements for Ruby 2.6

•Speedup `Proc#call` … x1.4 improvements
[Bug #10212].

•Speedup `block.call` where `block` is
passed block parameter. [Feature #14330]
(x2.62).

• Introduce Transient heap [Bug #14858]

https://bugs.ruby-lang.org/issues/14858

Transient heap

•Manage heap for young memories
• vs. malloc heap
•malloc()/free() is heavy operation and introduce
memory fragmentation issue and theap solves it.
•Using Generational copy GC algorithm w/ MRI
specific hack

•Array, Object (user defined class), Struct and
small Hash objects use theap now
• Support String is desired, but too difficult

Transient heap
Array creation (loop{Array.new(n))

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30 35

S
p

e
e
d

u
p

 r
a
ti

o
 (

u
p

p
e
r

is
 b

e
tt

e
r)

Array.new(x)

Array with 0..3
elements don’t

use theap

x1.0

x1.5

Transient heap
Small hash creation (loop{h = {…}})

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7 8 9 10

S
p

e
e
d

u
p

 r
a
ti

o
 (

u
p

p
e
r

is
 b

e
tt

e
r)

of Hash elements

x1.0

x1.5

>8 Hash
objects don’t

use theap

Ruby 2.6: Transient heap
Summary

•Transient heap is new memory hack
•Generational Copy GC technique
•MRI specific hack to keep compatibility

•Your application can improve performance on
Ruby 2.6
•Microbenchmarks show good improvements.

• x1.5 - x2.0 faster for creation & collection
•Unfortunately, discourse rails benchmark doesn’t
show clear perf. improvements

Parallel programming
in Ruby3

with Guild
Koichi Sasada

Cookpad Inc.
<ko1@cookpad.com>

TL;DR

•Guild is new concurrent abstraction to force
no-sharing mutable objs for Ruby 3

•Guild specification is not fixed yet

•Guild implementation is not mature (PoC)

•Your comments are highly welcome!!

Background of
Guild

Motivation

Productivity (most important for Ruby)

• Thread programming is too difficult because sharing

mutable objects

• Correct/safe concurrent programs easily is important

Performance by Parallel execution

• Utilizing Multi/many CPU cores is important for performance

RubyKaigi2016 (and RubyConf 2016)
Proposal

Guild: new concurrency abstraction for Ruby 3

• Idea: DO NOT SHARE mutable objects between Guilds

→ No data races, no race conditions

Replace Threads to Guilds

Design of
Guild
Not fixed yet.

Guilds, Threads and Fibers

•Guild has at least one thread (and a thread
has at least one fiber)

Guild

Thread

Fiber

Guild

Thread

Fiber

Guild

Thread

Fiber

Fiber

Thread

Fiber

Threads in different guilds
can run in PARALLEL

•Threads in different guilds can run in parallel
•Threads in a same guild can not run in parallel
because of GVL (or GGL: Giant Guild Lock)

G1:T1

G1:T2

G2:T3

Acquire GGL

Acquire GGL

Making Guilds

g1 = Guild.new do

expr1

end

g2 = Guild.new do

expr2

end

Two new Guilds and Threads are created

expr1 and expr2 can run in parallel

Inter-Guild communication
Share only “shareable” objects

Shareable
obj1

Shareable
obj2

Guild 1 Guild 2

normal
mutable

obj

normal
mutable

obj
normal

mutable
obj

normal
mutable

obj

normal
mutable

obj

normal
mutable

obj

normal
mutable

obj

Design “shareable” and “non-sharable”

•You can enjoy usual mutating
programming without any thread-safe
concerns because we can’t share mutable
objects between Guilds. They are “non-
sharable”.

• In other words, you can’t make thread-
unsafe (data-racy) programs on Guilds.

Design “shareable” and “non-sharable”
•On concurrent programs, most of objects are not
shared (thread-local)
•Tons of local objects and a few sharing objects
•You only need to care about a few sharable objects

non-
sharable

non-
sharable

non-
sharable

non-
sharable

sharable

sharable

non-
sharable

non-
sharable

non-
sharable

non-
sharable

non-
sharable

non-
sharable

non-
sharable

non-
sharablenon-

sharable

non-
sharable

non-
sharable

non-
sharable

Design “shareable” and “non-sharable”

•Non-shareable objects == most of objects
•Most of mutable objects (String, Array, …)
•They are member of only one Guild
• If you use only 1 Guild, it compatible with Ruby 2

Guild 1 Guild 2

obj
obj

obj

obj

obj
Can’t access
(read/write)

NG!!

Design “Shareable” and “non-sharable”

•Shareable objects
• (1) Immutable objects (Numeric, Symbol, …)
• (2) Class/Module objects
• (3) Special mutable objects
• (4) Isolated Proc

• Important invariant
•Sharable objects only refer to sharable
objects

Shareable objects
(1) Immutable objects

• Immutable objects can be shared with any guilds
• Because no mutable operations for them

• “Immutable” != “Frozen”
• a1 = [1, 2, 3].freeze: a1 is Immutable
• a2 = [1, Object.new, 3].freeze: a2 is not Immutable
• Maybe we will introduce deep freeze feature

•Example of immutable objects
• Numeric objects, symbols, true, false, nil are immutable
• Frozen string objects are immutable (if they don’t have

instance variables)

Shareable objects
(2) Class/Module objects

•All objects (including any sharable objects) point to
own classes
• Good:

• Easy Implementation and good communication performance
• Sharing class/module objects makes program easier

• Bad:
• They can point to other mutable objects with Constants,

@@class_variable and @instance_variables
class C

Const = [1, 2, 3] # Const points a mutable
array
end

We will introduce special protocol for them

Shareable objects
(3) Special mutable objects

• Introduce shared/concurrent data structure
• Shared hash, array, …
• Software transactional memory (from Clojure, …), …
• Guild objects and so on

•They require special protocol to force
synchronization explicitly
• They can’t mutate without synchronizations.
• Easy to make correct concurrent programs

•Compared with normal Array, Hash, … they should
require special synchronization protocol to access

Shareable objects
(4) Isolated Proc

•Normal Proc can point to mutable objects
with outer local variable (free-variables)
a = []; Proc.new{p a}.call

• Introduce Isolated Proc (made by
Proc#isolate) which is prohibited to access
outer variables
a = []; Proc.new{p a}.isolate.call

#=> RuntimeError (can’t access a)

Shareable objects
(4) Isolated Proc
Initial block for Guild is isolated proc

g1 = Guild.new do

expr1 # Make isolated block and invoke

end

g2 = Guild.new do

p g1 #=> RuntimeError (can’t access “g1”)

because block is isolated

end

FYI: Other languages using similar ideas

•Similar to Guild
•Racket: Place (imm. or special mut. values)
•Kotlin/Native: Worker (check ownership)

•Almost isolated
•Shell script: Process (copy byte stream)
• JavaScript: Worker

•Everything immutable
•Erlang, Elxir: Process

Inter-Guild communication API

•Actor model, send/receive semantics
•Not fixed yet (discuss later)

•Destination addresses are represented by
Guild itself like Erlang/Elixir processes
•Sending shareable objects means sending
only references to the objects (lightweight)
•Two methods to send non-shareable objects
• (1) COPY
• (2) MOVE

Sending objects between Guilds

g1 = Guild.new do # create Isolated Proc

n = Guild.receive

r = fib(n)

Guild.parent << r

end

g1 << 30 # or g1.send(30)

p Guild.receive #=> 1346269

Sending shareable objects

Guild1: g1 Guild2: g2

o2
o3

o1

g2 << o1 o1 =Guild.receive

O2:Data O3:Data

Sending non-shareable objects
(1) Send by Copy

Guild1 Guild2

o2
o3

o1
channel

o2
o3

o1

COPY

g2 << o1 o1 = Guild.receive

O2:Data

O3:Data

O2:Data

O3:Data

Sending non-shareable objects
(2) Send by Move

Guild1 Guild2

o2
o3

o1
channel

MOVE

g2.move(o1) o1 =Guild.receive

O2:Data

O3:Data

Sending non-shareable objects
(2) Send by Move

Guild1 Guild2

channel

o2
o3

o1

MOVE

g2.move(o1) o1 = Guild.receive

O2:Data

O3:Data

-
-

-

From Guild1 perspective,
sent objects are invalidated

Sending non-shareable objects
(2) Send by Move

• If we don’t access sent objects after
sending them (and there are many such
cases), we can send them faster

•Examples
•Huge string data
• I/O objects (send request I/O to workers)

Summary of sharable/non-sharable objects
with copy/move operations

• Non-sharable objects
• Normal mutable objects (like String, Array, …)
• Only one Guild can access such objects == membership
• We can send them by COPY or MOVE

• Shareable objects
• Several types of shareable objects
• They requires special synchronization protocol to mutate them
• We can share them between Guilds by sending references

Mutable objs are NOT shared accidentally as Thread
→ Safe concurrent programming

Discussion:
How to represent communication channel?

•Actor model
•Destination is specified by a Guild
• guild << obj
• Erlang/Elixir, …

•CSP model
•Destination is specified by a channel
• ch << obj

•Go, JavaScript, Kotolin/native, Racket, …

•They have advantages and disadvantages…

Retrieve multiple channels

•Sometimes we need to manipulate with
multiple channel
•Data channel and control channel
•Monitoring channel for child Guilds

•How to provide APIs to support it?

Go language goroutine and channels

https://tour.golang.org/concurrency/5

select {

case c <- x:

x, y = y, x+y

case <-quit:

fmt.Println("quit")

return

}

https://tour.golang.org/concurrency/5

Erlang/Elixir Process

https://elixir-lang.org/getting-started/processes.html

iex> receive do

...> {:hello, msg} -> msg

...> {:world, msg} -> "won't match"

...> end

https://elixir-lang.org/getting-started/processes.html

JavaScript Worker and MessageChannel

// https://developer.mozilla.org/en-US/docs/Web/API/MessageChannel

var channel = new MessageChannel();

var output = document.querySelector('.output');

var iframe = document.querySelector('iframe');

// Wait for the iframe to load

iframe.addEventListener("load", onLoad);

function onLoad() {

// Listen for messages on port1

channel.port1.onmessage = onMessage;

// Transfer port2 to the iframe

iframe.contentWindow.postMessage('Hello from the main page!', '*', [channel.port2]);

}

// Handle messages received on port1

function onMessage(e) {

output.innerHTML = e.data;

}

https://developer.mozilla.org/en-US/docs/Web/API/MessageChannel

Racket place

; https://docs.racket-lang.org/reference/sync.html#%28def._%28%28quote._~23~25kernel%29._handle-evt%29%29

> (define msg-ch (make-channel))

> (define exit-ch (make-channel))

> (thread

(λ ()

(let loop ([val 0])

(printf "val = ~a~n" val)

(sync (handle-evt

msg-ch

(λ (val) (loop val)))

(handle-evt

exit-ch

(λ (val) (displayln val)))))))

https://docs.racket-lang.org/reference/sync.html#%28def._%28%28quote._~23~25kernel%29._handle-evt%29%29

Multiple channels for Actor model

• Support “Tag” (shows channel)
• guild.send_to(:data, obj)

• guild.send(obj) send to the
default tag

• Receive with multiple tag
• Guild.receive(tag1, tag2,
…){|tag, obj| …}

g2 = Guild.new{

cont = true

while cont

Guild.receive(:data, :ctrl){|tag, obj|

case tag

when :data

calc(obj)

when :ctrl

case obj

when :exit

cont = false

else

raise "unknown"

end

end

}

end

}

Multiple channels for CSP model

• Making channels explicitly

• Send to a channel
• ch << obj

• Receive with multiple
channels
• Guild::Channel.receive(
ch1, ch2, …){|ch, obj|

…}

g2 = Guild.new(data_ch, cntl_c){|d_ch, c_ch|

cont = true

while cont

wait for multiple channel

Guild::Channel.receive(d_ch, c_ch){|ch, obj|

case ch

when d_ch

calc(obj)

when c_ch

case obj

when :exit

cont = false

else

raise "unknown ctrl: #{obj}"

end

end

}

end

}

Guild
Implementation
Preliminary implementation includes many bugs, performance issues.

https://github.com/ko1/ruby/tree/guild

https://github.com/ko1/ruby/tree/guild

Guild context

•Before Guild
•VM -> *Threads -> *Fibers

•After Guild
•VM -> *Guilds -> *Threads -> *Fibers
• Introduce rb_guild_t.

Introduce synchronizations

•Before Guild
•Multiple threads cannot run simultaneously

•After Guild
•Run (native) threads in parallel

•Need to introduce many synchronizations
• Introduce VM-wide locks for VM-wide resources
• It is the multi-thread programming!!

Garbage collection

•Stop all Guilds (threads) at GC process

G1:T1

G2:T2

G3:T3

GC process
Pause
request

Restart
request

Implementation is not completed

•Features
• Fix GC bug
•Prohibit sharing non-sharable objects
• Introduce synchronizations to protect VM-wide
resources (process-global)
• Introduce “sharable” object protocols

•Performance
•Reduce synchronizations
•Per Guild Garbage collection
• Introduce new “C API” to reduce TLS access

Future optimizations

• Koichi Sasada, et.al. : An
Implementation of Parallel
Threads for YARV: Yet Another
RubyVM (2007)
• They introduced several

optimization techniques to reduce
synchronizations

Naming of “Guild”

Why “Guild”?

•Prefix should be different from “P”
(Process), “T” (Therad) and “F” (Fiber).

•Ownership can be explained with the word
“Membership”.
•All (normal) objects belong to one Guild.
•Easy to explain “Move” semantics

Any problem?

• “Move” operation is not so popular operation
(most of case “copy” is enough)
•No other languages use this terminology

•Naming is important

• Just now “Guild” is a code name of this
project

Demonstrations
on the current PoW implementation.

Demonstration (on 40 vCPUs)

•CPU 40 virtual CPUs (2 x 10 x 2)
• Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz

• x10 cores
• x2 hyper threading

• x2 CPUs

•Ubuntu 16.10
•Already EOL 

Demonstration (on 40 vCPUs)

•Workload
•Calculate fib(23) x 100_000 times

• Serial version: 100_000.times{ fib(23) }
• Guild version:

main
Guild

FibHub
Guild

fib
workerfib

worker
fib

worker
…load balancing

We can change
of workers

FIBHUB = make_worker_hub do |n|

[n, fib(n)]

end

library

def make_worker_hub n_workers = WN, &worker_proc

pp WN: n_workers if $VERBOSE

Guild.new(n_workers, worker_proc) do |nw, wp|

guilds = nw.times.map do

Guild.new do

while data = Guild.receive

result = wp.call(data)

Guild.parent << [:ans, Guild.current, result]

end

end

end

requests = []

while true

cmd, sender_guild, data = *Guild.receive

case cmd

when :req

if g = guilds.pop

g << data

else

requests << data

end

when :ans

Guild.parent << data

if req = requests.pop

sender_guild << req

else

guilds << sender_guild

end

end

end

end

end

Make worker guilds # Receive an answers from workers

Send a remaining task
to the worker if exists

Send a task
if an idle worker is available

Receive a request from master

Send an answers to master

You don’t need to write such common code
but we provide some kind of a framework

https://gist.github.com/ko1/e5327126a77e078a0ffdf005013592ea

https://gist.github.com/ko1/e5327126a77e078a0ffdf005013592ea

fib(23) with # of Guilds on 40 vCPUs

0

5

10

15

20

0 20 40 60 80 100

of Guilds

Speedup ratio (compare with serial execution)

Demonstration (on 40 vCPUs)

•Workload
•Calculate fib(n) x 100_000 times (0 ≦n≦30)

• Serial version: 100_000.times{ fib(23) }
• Guild version: 40 Guilds

main
Guild

FibHub
Guild

fib
workerfib

worker
fib

worker
…load balancing

Execution time (sec) of fib(n) x 100_000
with 40 Guilds on 40 vCPUs

0

5000

10000

15000

0 5 10 15 20 25 30 35

s
e
c

n for fib(n)

real (sec) real-serial (sec)

12,896.23 sec
=~ 3.5 hours

791.2541 sec
=~ 13 minutes

fib(n) with 40 Guilds on 40 vCPUs

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

0 5 10 15 20 25 30 35

S
p

e
e
d

u
p

 r
a
ti

o
 c

o
m

p
a
re

w
it

h
 s

e
ri

a
l
e
xe

c
u

ti
o
n

n for fib(n)

Slower Faster

fib(9): about 100 recursive calls

Demonstration (on 40 virtual CPU)

•Workload
•Calculate wordcount for files and find a file
which contains maximum number of words.
• on “ruby/test/**/*” files (1,108 files)

def word_count file

r = File.read(file).b.upcase.split(/¥W/).uniq.size

end

Demonstration (on 40 virtual CPU)

•Workload
•Calculate wordcount for files and find a file
which contains maximum number of words.
• on “ruby/test/**/*” files (1,108 files)

main
Guild

WCHub
Guild

wc
workerwc

worker
wc

worker
…load balancing

We can change
of workers

traverse directories,
correct wc results,

and calculate maximum

Demonstration (on 40 virtual CPU)

1.736429 1.652815
2.473468

6.136364

0

5

10

Serial 1 Guold 2 Guild 40 Guilds

E
xe

c
u

ti
o
n

 t
im

e

(s
e
c
)

It is SLOW with multiple Guilds
because GC/object allocation require naïve global locking
(current implementation limitation) and huge contentions.

Today’s talk

•Ruby 2.6 updates of mine

• Introduction of Guild
•Design
•Discussion
• Implementation
•Preliminary demonstration

Parallel programming
in Ruby3

with Guild

Koichi Sasada

Cookpad Inc.
<ko1@cookpad.com>

Thank you for your attention

Pros./Cons. Matrix
Process Guild Thread Auto-Fiber Fiber

Available Yes No Yes No Yes

Switch on
time

Yes Yes Yes No No

Switch on I/O Auto Auto Auto Auto No

Next target Auto Auto Auto Auto Specify

Parallel run Yes Yes No (on MRI) No No

Shared data N/A (mostly) N/A Everything Everything Everything

Comm. Hard Maybe Easy Easy Easy Easy

Programming
difficulty

Hard Easy Difficult Easy Easy

Debugging
difficulty

Easy? Maybe Easy Hard Maybe hard Easy

