
Ruby 3

Concurrency

Koichi Sasada
ko1@heroku.com

RubyConf 2016

A proposal of

new concurrency model

for Ruby 3

Koichi Sasada
ko1@heroku.com

RubyKaigi 2016

Motivation

Productivity

• Thread programming is very difficult

• Making correct concurrent programs easily

Performance by Parallel execution

• Making parallel programs

• Threads can make concurrent programs, but can’t run them in
parallel

• People want to utilize Multi/many CPU cores

RubyKaigi2016 Proposal

Guild: new concurrency abstraction for Ruby 3

• Idea: DO NOT SHARE mutable objects between Guilds

• → No data races, no race conditions

Replace Threads to Guilds

RubyKaigi2016 Proposal

Guild: new concurrency abstraction for Ruby 3

• Idea: DO NOT SHARE mutable objects between Guilds

• → No data races, no race conditions

Kill Threads

Today’s talk

Why is thread programming difficult?

Why does Guild solve this difficulty?

I’ll try to shrink this talk (but has 70 pages).
Long version talk at RubyKaigi2016 is available:

http://rubykaigi.org/2016/presentations/ko1.html

http://rubykaigi.org/2016/presentations/ko1.html

NOTE

“Guild” is proposal for Ruby 3.
Specifications

and name of “Guild”
can be changed.

Koichi Sasada

•A programmer living in Tokyo, Japan

•Ruby core committer since 2007
•YARV, Fiber, … (Ruby 1.9)
•RGenGC, RincGC (Ruby 2…)

Koichi is an Employee

Koichi is an Employee

Visit Heroku booth and discuss more!

Difficulty of
Multi-threads programming

Difficult to make
correct (bug-free)

programs

Muilti-threads programming is difficult

• Introduce data race, race condition

• Introduce deadlock, livelock

•Difficulty on debugging because of
nondeterministic behavior
•difficult to reproduce same problem

•Difficult to tune performance
Difficult to make

fast programs

Data race and race condition

•Traditional “Bank amount transfer” example
•Quoted from Race Condition vs. Data Race

http://blog.regehr.org/archives/490

def transfer1 (amount, account_from, account_to)
if (account_from.balance < amount) return NOPE
account_to.balance += amount
account_from.balance -= amount
return YEP

end

http://blog.regehr.org/archives/490

Data race and race condition

def transfer1 (amount, account_from, account_to)
if (account_from.balance < amount) return NOPE
account_to.balance += amount
account_from.balance -= amount
return YEP

end Can you find all bugs?

Data race and race condition

def transfer1 (amount, account_from, account_to)
if (account_from.balance < amount) return NOPE
account_to.balance += amount
account_from.balance -= amount
return YEP

end Data Race

Data race and race condition

def transfer1 (amount, account_from, account_to)
if (account_from.balance < amount) return NOPE
account_to.balance += amount
account_from.balance -= amount
return YEP

end Race Condition

Data race and race condition

•Solution: Lock (synchronize) all over the method

def transfer1 (amount, account_from, account_to)
Thread.exclusive{

if (account_from.balance < amount) return NOPE
account_to.balance += amount
account_from.balance -= amount
return YEP

}
end

Difficulty of multi-threads programs

•We need to synchronize all sharing mutable
objects correctly
• Easy to share objects, but difficult to recognize
•We can track on a small program
•Difficult to track on a big programs, especially on

programs using gems

•We need to check all of source codes, or believe
library documents (but documents should be correct)

Overcome thread difficulty

Key idea

Problem of multi-thread programming:

Easy to share mutable objects

Idea:

Do not allow to share mutable objects
without any restriction

Study from other languages
•Do not share mutable objects

• Copy to send message (shell, druby, …)
•  Copy everything is slow

• Prohibit mutable objects (functional lang, Erlang, Elxir)

• We can’t accept such big incompatibility

• Share only immutable objects (Place (Racket))
• We want to share other kind of objects

•Allow sharing with restriction
• Allow mutation only with special protocol (Clojure)

•  we can’t accept special protocol

NOTE: we do not list approaches using “type system” like Rust

Our goal for Ruby 3

•We need to keep compatibility with Ruby 2.
•We can make parallel program.
•We shouldn’t consider about locks any more.
•We can share objects with copy, but copy
operation should be fast.
•We should share immutable objects if we can.
•We can provide special objects to share mutable
objects like Clojure if we really need speed.

“Guild”
New concurrency model for Ruby 3

Guild: New concurrency abstraction

•Guild has at least one thread (and a thread has
at least one fiber)

Guild

Thread

Fiber

Guild

Thread

Fiber

Guild

Thread

Fiber

Fiber

Thread

Fiber

Threads in different guilds can run in
Parallel
• Threads in different guilds can run in parallel
• Threads in a same guild can not run in parallel

because of GVL (or GGL: Giant Guild Lock)

G1:T1

G1:T2

G2:T3

Acquire GGL

Acquire GGL

Important rule:
Mutable Objects have a membership

•All of mutable objects should belong to only
one Guild exclusively

•Because Guild is not “Community”

Guild 1 Guild 2

obj
obj

obj

obj

obj
Can’t access
(read/write)

NG!!

Object membership

Only one guild can access mutable object

→ We don’t need to consider about locks

(if Guild has only one thread)

Inter-guild communication

•“Guild::Channel” to communicate each guilds

•Two communication methods
1. Copy
2. Move (transfer_membership)

Copy using Channel

Guild1 Guild2

o2
o3

o1
channel

o2
o3

o1

COPY

channel.transfer(o1) o1 = channel.receive

O2:Data

O3:Data

O2:Data

O3:Data

Move using Channel

Guild1 Guild2

o2
o3

o1
channel

MOVE

channel.transfer_membership(o1) o1 = channel.receive

O2:Data

O3:Data

Move using Channel

Guild1 Guild2

channel

o2
o3

o1

MOVE

channel.transfer_membership(o1) o1 = channel.receive

O2:Data

O3:Data

-
-

-

From Guild1 perspective,
transferred objects are invalidated

Move using Channel

•Prohibit accessing to left objects
•Cause exceptions and so on
• ex) obj = “foo”

ch.move (obj)
obj.upcase #=> Error!!
p(obj) #=> Error!!

Use cases for copy and move

•You can copy small objects (dRuby does)
•Parameter array ([:do_foo, 1, 2, 3], like Erlang)

•You can move small amount number of objects
•Move a long string and modify them in parallel

Sharing immutable objects

• Immutable objects can be shared with any
guilds
• a1 = [1, 2, 3].freeze: a1 is Immutable object
• a2 = [1, Object.new, 3].freeze: a2 is not immutable

•We only need to send references
•Very lightweight, like thread-programming

•Numeric objects, symbols, true, false, nil are
immutable (from Ruby 2.0, 2.1, 2.2)

Sharing immutable objects
We can share reference to immutable objects

Guild1 Guild2

o2
o3

o1

channel

channel.transfer(o1) o1 = channel.receive

O2:Data O3:Data

Ref to
o1

If o1 is immutable, any Guild can read o1

read

Ref to
o1

read

Use-case 1: master – worker type
def fib(n) ... end
g_fib = Guild.new(script: %q{

ch = Guild.default_channel
while n, return_ch = ch.receive

return_ch.transfer fib(n)
end

})

ch = Guild::Channel.new
g_fib.transfer([3, ch])
p ch.receive

Main
Guild

Fibonacci
Guild

ch

return_ch

n, return_ch

Answer of fib(n)

NOTE: Making other Fibonacci guilds,
you can compute fib(n) in parallel

Use-case 2: pipeline
result_ch = Guild::Channel.new
g_pipe3 = Guild.new(script: %q{
while obj = Guild.default_channel.receive
obj = modify_obj3(obj)
Guild.argv[0].transfer_membership(obj)

end
}, argv: [result_ch])
g_pipe2 = Guild.new(script: %q{
while obj = Guild.default_channel.receive
obj = modify_obj2(obj)
Guild.argv[0].transfer_membership(obj)

end
}, argv: [g_pipe3])
g_pipe1 = Guild.new(script: %q{
while obj = Guild.default_channel.receive
obj = modify_obj1(obj)
Guild.argv[0].transfer_membership(obj)

end
}, argv: [g_pipe2])

obj = SomeClass.new

g_pipe1.transfer_membership(obj)
obj = result_ch.receive

Main
Guild

Pipe 1
Guild

obj

Obj’
Move
and modify

Pipe 2
Guild

Obj’’

Move
and modify

Pipe 3
Guild

Obj’’’

Obj’’’

Move
and modify

Move

Use-case:
Bank example

Bank
Guild

g_bank = Guild.new(script: %q{
while account_from, account_to, amount,

ch = Guild.default_channel.receive
if (Bank[account_from].balance < amount)
ch.transfer :NOPE

else
Bank[account_to].balance += amount
Bank[account_from].balance -= amount
ch.transfer :YEP

end
end

})
…

Other
guilds

Other
guilds

requests

Only bank guild maintains bank data

Use-case:
Introduce special data structure
• Ideas of special data

structure to share
mutable objects
• Use external RDB
• In process/external

Key/value store
• Software transactional

memory
• …

??

Other
guilds

Other
guilds

Compare between threads and guilds

• Threads:
• Inter threads communication is very fast
•We already know thread-programming
• Difficult to make correct thread-safe programs

•Guilds:
• Inter guilds communication introduces overhead

•  “Move” technique can reduce this kind of overheads
•We need to learn this model
•We need to make parallel programs from scratch
•We don’t need to care about synchronizations any more

Trade-off: Performance v.s. Safety/Easily
Which do you want to choose?

Discussion: The name of “Guild”

•“Guild” is good metaphor for “object’s membership”
•Check duplication
•Nobody using as programming terminology (maybe)
• There are no duplicating top-level classes and modules

in all of rubygems
• First letter is not same as other similar abstractions

• For variable names
• P is for Processes, T is for Threads, F is for Fibers

Implementation of “Guild”

•How to achieve “object membership”

•How to implement “Inter Guilds communication”

•How to design “shared mutable data”

•How to isolate “process global data”

How to implement inter Guilds
communication
•Copy

•Move (transfer membership)

Copy using Channel

Guild1 Guild2

o2
o3

o1
channel

o2
o3

o1

COPY

channel.transfer(o1) o1 = channel.receive

O2:Data

O3:Data

O2:Data

O3:Data

Copy using Channel
Implementation

Guild1 Guild2

o2
o3

o1
channel

o2
o3

o1

(1) Make
deep copy

channel.transfer(o1) o1 = channel.receive

O2:Data

O3:Data

O2:Data

O3:Data

Copy using Channel
Implementation

Guild1 Guild2

o2
o3

o1
channel

o2
o3

o1

(2) Move/Join

channel.transfer(o1) o1 = channel.receive

O2:Data

O3:Data

O2:Data

O3:Data

We can use CoW
technique for data

Move using Channel

Guild1 Guild2

o2
o3

o1
channel

MOVE

channel.transfer_membership(o1) o1 = channel.receive

O2:Data

O3:Data

Move using Channel

Guild1 Guild2

channel

o2
o3

o1

MOVE

channel.transfer_membership(o1) o1 = channel.receive

O2:Data

O3:Data

-
-

-

From Guild1 perspective,
transferred objects are invalidated

Move using Channel
Implementation

Guild1 Guild2

o2
o3

o1
channel

o2
o3

o1

(1) Make
deep copy

channel.transfer_membership(o1) o1 = channel.receive

O2:Data O3:Data

-
-

-
(2) Invalidate originals

Move using Channel
Implementation

Guild1 Guild2

o2
o3

o1
channel

o2
o3

o1

(3) Move/Join

channel.transfer_membership(o1) o1 = channel.receive

O2:Data O3:Data

-
-

-
(2) Invalidate originals

Move using Channel
Implementation
•“Move” is not a reference passing,

but a copy object headers

→ Objects don’t need to know own guild

→ Interpreter doesn’t need to check guilds

•Mutable objects live in same guild their entire life

Ruby global data
• Global variables ($foo)

• Change them to Guild local variables

• Class and module objects
• Share between guilds

• Class variables
• Change them to guild local. So that it is guild/class local variables

• Constants
• Share between guilds
• However if assigned object is not a immutable object, this constant is accessed only by setting guilds. If other

guilds try to access it, them cause error.

• Instance variables of class and module objects
• Difficult. There are several approaches.

• Proc/Binding objects
• Make it copy-able with env objects or env independent objects

• ObjectSpace.each_object
• OMG

Interpreter process global data
• GC/Heap

• Share it. Do stop the world parallel marking- and lazy concurrent sweeping.

• Synchronize only at page acquire timing. No any synchronization at creation time.

• Inline method cache

• To fill new entry, create an inline cache object and update atomically.

• Tables (such as method tables and constant tables)

• Introduce mutual exclusions.

• Current working directory (cwd)

• Each guild should have own cwd (using openat and so on).

• Signal

• Design new signal delivery protocol and mechanism

• C level global variables

• Avoid them.

• Main guild can use C extensions depends on them

• Current thread

• Use TLS (temporary), but we will change all of C APIs to receive context data as first parameter in the future.

Performance evaluation

•On 2 core virtual machine
• Linux on VirtualBox on Windows 7

•Now, we can’t run Ruby program on other than
main guild, so other guilds are implemented by C
code

Performance evaluation
Simple numeric task in parallel

Main
Guild

Fibonacci
GuildFibonacci

GuildFibonacci
GuildFibonacci

Guild

Total 50 requests to compute fib(40)
Send 40 (integer) in each request

Execution
time (sec)

Single-Guild 19.45

Multi-Guild 10.45

Performance evaluation
Copy/Move

Main
Guild

sum

sum

sum

sum
Guild

Total 100 requests to compute sum of array
Send (1..10_000_000).to_a in each request

Execution
time (sec)

Single-Guild 1.00

Multi/ref 0.64

Multi/move 4.29

Multi/copy 5.16

Too slow!!
Because “move” need to
check all of elements

Performance evaluation
Copy/Move

Main
Guild

sum

sum

sum

sum
Guild

Execution
time (sec)

Single-Guild 1.00

Multi/ref 0.64

Multi/move 0.64

If we know this array only has immutable objects,
we don’t need to check all elements => special data structure

Check our goal for Ruby 3

• We need to keep compatibility with Ruby 2.
• OK: Only in main guild, it is compatible.

• We can make parallel program.
• OK: Guilds can run in parallel.

• We shouldn’t consider about locks any more.
• OK: Only using copy and move, we don’t need to care locks.

• We can share objects with copy, but copy operation should be fast.
• OK: Move (transfer membership) idea can reduce overhead.

• We should share objects if we can.
• OK: We can share immutable objects fast and easily.

• We can provide special objects to share mutable objects like Clojure
if we really need speed.
• OK: Yes, we can provide.

FAQ

•Q: Can we try Guild now?

•A: No.
• Implementation on MRI is big project. Not yet.

• Supporting this project is welcome.

• Some guys are trying to implement it on JRuby.

FAQ

•Q: Should we wait Guild for Ruby 3?

•A: Not sure.
•2.6? 2.7? 2.8?
• I want to implement it next year.

FAQ

•Q: Can Guild replace ALL of Thread programs?

•A: No.
• To utilize Guild, you need to rewrite your programs.
• I assume 90% of programs are easy to replace.
• For example, “moving” IO object is easy to

understand, so that web application server is easy
to implement.

FAQ

•Q: Membership seems “ownership”. Right?

•A: Yes.
•Actually, we call this idea “ownership” before.
•We named “membership” because “Guild” is not

owner of members.

FAQ

•Q: “Moving” cause huge overhead for big object
graph (like big Hash object). Right?

•A: Yes.
•We need to move all of objects (e.g. Hash entries).
•We need to introduce special data structures for such

big object graph (like Clojure).
• I believe people can change their mind to fit this model.

FAQ

•Q: Can we share Proc object?

•A: No.
•Good question. I’m thinking several options:

• Allow to copy local environment (variables)
• Allow to move local environment (variables)
• Introduce isolated Proc

Summary

• Introduce “why threads are very difficult”

•Propose new concurrency abstraction “Guild” for
Ruby 3
•Not implemented everything yet, but I show key

ideas and preliminary evaluation

Thank you for your attention

Koichi Sasada
<ko1@heroku.com>

Approach comparison

Process/MVM Place (Racket) Guild
(copy/move)

Thread

Heap (GC) Separate Separate Share Share

Communication
Mutable objects

Copy Copy Copy/Move Share

Communication
Immutable object

Copy Share (maybe) Share Share

Lock Don’t need Don’t need (mostly) Don’t need Required

ISeq (bytecode) Copy Share Share Share

Class/Module
(namespace)

Copy Copy (fork) Share Share

Related work

•“Membership transfer” is proposed by
[Nakagawa 2012], but not completed
•Alias analysis with type systems
•Ruby doesn’t support static type checking

•Dynamic alias analysis with runtime checking
•We need to reduce dynamic check overhead
•We can’t insert dynamic checking completely (this

is why I found “membership transfer”)

