
Compiling
Ruby scripts

Koichi Sasada
ko1@heroku.com



Today’s talk

• Making ruby script serializer and deserializer
• Well known technique and tools such as JVM class file

• No special technique is needed. Just implemented it.

• Introduction of how to use

• Evaluation result



Koichi Sasada
A programmer living in Japan



Koichi is a Programmer

•MRI committer since 2007/01
• Original YARV developer since 2004/01

• YARV: Yet Another RubyVM

• Introduced into Ruby (MRI) 1.9.0 and later

• Generational/incremental GC for 2.x



Koichi is an Employee



Satoshi Nagano
Heroku sales manager

Ayumu Aizawa
Solutions Architect, Heroku



Koichi is a member of Heroku 
Matz team

Mission

Design Ruby language

and improve quality of MRI
Heroku employs three full time Ruby core 
developers in Japan named “Matz team”



Upcoming Ruby 2.3
Today, no time to introduce new features…

Please ask me later.



Appreciation



CI server sponsored by YassLab.

A CI server for EL Capitann
Setup by Shibata-san



Many CI servers

1



So many contributions

Development 

• All MRI developers

• Committers

• Code and documents 
contributors

• Issue reporters

• Heroku

• Employs full-time 
MRI committers 
(Matz, Nobu, Ko1)

• Ruby Association

• Maintain Ruby 2.1 
and 2.0 (security)

Environment

• Ruby Association

• Sponsored CI servers on 
Cloud services

• YassLab and N.R.K

• Sponsored a new mac 
mini machines for CI 
server

• Prof. Sugaya, Shibaura 
Institute of Technology

• Allows us to locate 
physical machines

• Travis-CI

• Provides CI services

• CloudCore, DTI

• Provides CI servers

Deliver

• Fastly.com

• Delivers Ruby binaries 
by their CDN

• NaCl, IIJ, Heroku

• Host web servers

• GlobalSign

• Sponsored SSL 
certification



We need more supports

• Examples
• Nobu’s development machine
• Development/benchmark machines
• CI machines (VPS)
• Hackathon travel fee

• See “Misc #11783: Do you have any idea if you 
have a budgets?”
• https://bugs.ruby-lang.org/issues/11783

How about to utilize this opportunity
for your promotion?

https://bugs.ruby-lang.org/issues/11783


Compiling Ruby scripts



Compilers for interpreters

• JIT compilers
• Program to native machine code
• Runtime statistics information are 

available

•AOT compilers
• Program to native machine code
• Program to other languages code

• Translate to C, Java, etc…

• Program to persistent byte code
• RubyVM::InstructionSequence in Ruby’s case



Store serialized program and load

Ruby script

Compiled 
binary ISeq

Ruby process

ISeq

Ruby process

Read, parse 
and  compile

Serialize 
and store

Ruby 
process

Ruby 
Process

ISeq
ISeq

ISeq

Ruby 
process

Load and 
deserialize

Pre-compilation ISeq: Instruction sequence, a representation of program (bytecode) in 
RubyVM. An instance of RubyVM::InstructionSequence in Ruby world



Purpose of ISeq (de)serializer

• Fast boot

• Reduce memory consumption

• Migrate compiled code to other nodes



Purpose of ISeq (de)serializer
Goal of this time

• Fast boot

• Reduce memory consumption

• Migrate compiled code to other nodes

Not support portable binary

Not verify at loading time

→ Do not believe binaries by others

Out of scope



Fast boot

Interpret on RubyVM

Ruby
script

Parse

Compile

Ruby
Bytecode (ISeq)

Embedded
classes and methods

Evaluator

Libraries



Fast boot

Interpret on RubyVM

Ruby
script

Parse

Compile

Ruby
Bytecode (ISeq)

Embedded
classes and methods

Evaluator

Libraries

Compiled binary

Load

Extended part

Pre-compilation



Memory consumption
Current issue

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1

1

iseq_setup@compile.c 15,595,764

rb_iseq_new_with_opt@iseq.c 5,231,136

heap_assign_page@gc.c 40,518,400

st_init_table_with_size@st.c 18,994,480

rb_str_buf_new@string.c 4,817,252

st_update@st.c 6,578,736

onig_region_resize@regexec.c 4,891,968

others 37,676,810

ISeq consumes 15% (20MB) on simple Rails app



Memory consumption
Current issue on multi-processes

Bytecodes
Bytecodes

Process

Bytecodes

Independent BCs

Shared 
Bytecode

Data

Process

BC

(Partialy) Shared BCs

Actual Expected



Design and 
implementation



ISeq tree

• ISeq consists as tree
• Basically, each scope has own ISeq

• A top-level has class expressions

• Class expression has method definitions

• Method definition has blocks

• Block has blocks, …

• Other bytecode blocks
• ensure, rescue, …

• And other exceptional cases

toplevel

class C1 class C2

def m1 def m2

Ruby script



Binary data format
(not so matured)

Hea
der

Iseq list ID list
Object 

list
BC
1

BC
2

ID
1

ID
2

obj
1

obj
2

• Iseq (BC), ID, Objects are pointed by index of each lists in each data
• Objects are serialized (manually)
• Dump machine dependent data (can’t migrate compiled code)
• No verifier (because this file is not for migrations)



Technique
Lazy loading
• Do not load every bytecode at once

• Load bytecode if needed



Technique
Lazy loading

Toplevel
(empty)

Compiled 
binary

toplevel
C1,C2,
m1,m2

Ruby script

class C1
def m1; end
def m2; end

end
C1.new.m2
class C2; end

(1)Load and make an empty toplevel Iseq



Technique
Lazy loading

Toplevel

Compiled 
binary

toplevel
C1,C2,
m1,m2

(2) Load toplevel ISeq and make 
empty C1, C2 empty ISeq and 
evaluate toplevel ISeq

class C1
(empty)

class C2
(empty)

Ruby script

class C1
def m1; end
def m2; end

end
C1.new.m2
class C2; end



Technique
Lazy loading

Toplevel

Compiled 
binary

toplevel
C1,C2,
m1,m2

(3) Load C1 and evaluate C1
Define m1 and m2 with empty 
ISeqs

class C1
class C2
(empty)

def m1
(empty)

def m2
(empty)

Ruby script

class C1
def m1; end
def m2; end

end
C1.new.m2
class C2; end



Technique
Lazy loading

Toplevel

Compiled 
binary

toplevel
C1,C2,
m1,m2

(4) Load m2 and invoke m2

class C1
class C2
(empty)

def m1
(empty)

def m2

Ruby script

class C1
def m1; end
def m2; end

end
C1.new.m2
class C2; end



Technique
Lazy loading

Toplevel

Compiled 
binary

toplevel
C1,C2,
m1,m2

(4) Load C2 and evaluate C2

class C1
class C2
(empty)

def m1
(empty)

def m2

Ruby script

class C1
def m1; end
def m2; end

end
C1.new.m2
class C2; end



Interface
API and Tools



How to store compiled binary?

• Compile timing
• Use compiler explicitly

• C/Java/… compilers

• Loading time
• Rubinius, Python, …

• Location of compiled binary
• A file in a same directory of *.rb files

• A file in a special directory

• DB

Not fixed!



Current implementation
Provide loading API

• RubyVM::InstructionSequence.load_iseq
• Call this method at every loading time (if defined)

• This method should return or loaded ISeq object or nil

• You can write your own loader
• From File

• From any DB

• From network, and so on

• RubyVM::InstructionSequence#to_binary

• RubyVM::InstructionSequnece.load_from_binary(binary)
• Serialize and deserialize (load) methods



Store serialized program and load

Ruby script

Compiled 
binary ISeq

Ruby process

ISeq

Ruby process

Read, parse 
and  compile

Serialize 
and store

Ruby 
process

Ruby 
Process

ISeq
ISeq

ISeq

Ruby 
process

Load and 
deserialize

Pre-compilation

ISeq#to_binary ISeq#load_from_binary



Using ISeq.load_iseq

Load_internal(fname)

Read, parse and compile 
script named fname (x.rb)

require/load process

File name (“x.rb”)

ISeq of x.rb

Load_internal(fname)

Call ISeq.load_iseq(fname)

Read, parse and compile 
script named fname (x.rb)

File name (“x.rb”)

ISeq of x.rb

New require/load process

ISeq.load_iseq(fname)

Load and return iseq

Can’t load



When should we compile?

• Compile timing
• Use compiler explicitly

• C/Java/… compilers

• Gem install timing is good idea to kick it

• Loading time (if not available, compile automatically)
• Python (.pyc), Rubinius (.rbc)

• Matz doesn’t like it



Where to store?

• “sample/iseq_load.rb” provides 3 type of repository

Using dbm
Store compiled binary in the 

same directory

/a/b/x.rb, x.rb.yarb

y.rb, y.rb.yarb

c/z.rb, z.rb.yarb

Store compiled binary in the 
specified directory

/a/b/x.rb, y.rb

c/z.rb

/repos/a_b_x.rb.yarb

a_b_y.rb.yarb

a_c_z.rb.yarb

Binary of x.rb

Binary of y.rb

Binary of z.rb

/a/b/y.rb

/a/b/x.rb

/a/c/z.rb



Usage of iseq_load.rb

• $ ruby iseq_load.rb [file or dir]
• Compile, serialize and store specified file or files in 

directories (dir/**/*.rb)

• $ ruby -r iseq_load [script]
• Enable loader

• Load stored files if possible

• Setting by environment variables

• See iseq_load.rb for details



NOTE: Experimental feature

• All of features are introduced as “Experimental”
• We don’t guarantee to keep these interface (methods)

• We don’t guarantee to keep binary format

• No verifier so that loading modified/broken binary causes 
critical problem

→ Do not load any binary data provided by others

Enjoy hacking your great Ruby program cache!



Evaluation



Evaluation

• Measure loading time of same script 1,000 times
• Use remove_const to cleanup each loading

• Choose from lib/*.rb

Target script Lines Size (KB)

resolv.rb 2,855 73
csv.rb 2,346 83
fileutils.rb 1,761 48
forwardable.rb 290 8



Evaluation
Loading time (x1,000)

Normal (sec) Load (sec) Lazy load (sec)

resolve.rb 13.19 3.92 (x3.36) 2.42 (x5.45)

csv.rb 7.88 4.19 (x1.88) 2.85 (x2.76)

fileutils.rb 8.55 4.64 (x1.84) 3.61 (x2.37)

forwardable.rb 0.48 0.18 (x2.67) 0.12 (x4.00)

 5 times faster on resolv.rb seems good
 Nobody load resolv.rb 1,000 times



Evaluation
Compiled binary size

Target script Lines Script size (KB) Binary size (KB)

resolv.rb 2,855 73 337
csv.rb 2,346 83 170
fileutils.rb 1,761 48 202
forwardable.rb 290 8 14



Evaluation
Rails launch time
• Loading time of sample simple Rails application

• $ rails r “”

Normal (sec) Load (sec) Lazy load (sec)

w/o bundle 1.89 1.42
(x1.33)

1.37
(x1.38)

w/ bundle 2.23 1.85
(x1.21)

1.85
(x1.21)



Future work

• Reduce memory consumption by memory 
sharing with mmap (and so on)

• Reduce binary size with some techniques
• Smart serialization technique

• Compaction technique

• And more…

Does anyone have an interest?

They may be worth hack topics.



Summary

• Introduced new “script serializer and deserializer”

• You can try this feature with Ruby 2.3 preview 2



Thank you for your attention

Koichi Sasada
<ko1@heroku.com>


