speedup
RuUby Interpreter

Koichi Sasada

<kol@heroku.com>

1! heroku

H

Today’s talk

* Ruby 2.1 and Ruby 2.2

* How to speed up Ruby interpreter?
 Evaluator
* Threading
* Object management / Garbage collection

Koichi Sasada as a Japanese

* Koichi Sasada a.k.a. ko1l

* From Japan

o HF (family name) M — (given

name) in Kanji character
* “Ichi” means “1” or first - S,
e This naming rule represents I’'m e LSS
the first son of my parents

e Ko”ichi” = kol

Koichi Sasada as a Programmer

* CRuby/MRI committer

* Virtual machine (YARV) from Ruby 1.9 _~
* YARV development since 2004/1/1 [hockaniNe

. . anguage
e Recently, improving GC performance

e Matz team at Heroku, Inc.

* Full-time CRuby developer
* Working in Japan

 Director of Ruby Association

Speedup Ruby interpreter, Koichi Sasada,
DeccanRubyConf2014

{7 Ruby Association

The Ruby Association was founded to further
development of the programming language Ruby.

The goals of the Ruby Association are to improve
relationship between Ruby-related projects,
communities and businesses, and to address issues
connected with using Ruby in an enterprise
environment.

Quoted from http://www.ruby.or.ip/en/

Speedup Ruby interpreter, Koichi Sasada,
DeccanRubyConf2014

http://www.ruby.or.jp/en/

7 Ruby Association

* Foundation to encourage Ruby dev. and
communities

* Activities
* Ruby programmer certification program
e http://www.ruby.or.jp/en/certification/examination/ in English
e Grant project. We have selected 3 proposals in 2013

* Ruby Prize

* To recognize the efforts of “New members” to the Ruby
community

e http://www.ruby.or.jp/en/news/20140627.html
* Maintenance of Ruby (Cruby) interpreter

* Now, it is for Ruby 2.0.0
* Events, especially RubyWorld Conference

e http://www.rubyworld-conf.org/

Donation for Ruby developments and communities

Speedup Ruby interpreter, Koichi Sasada,
DeccanRubyConf2014

http://www.ruby.or.jp/en/certification/examination/
http://www.ruby.or.jp/en/news/20140627.html
http://www.rubyworld-conf.org/

Advertisement

[M =t L =

7 Ruby Association
A MNews About Us

TOP = Certification = Examination

I Ruby Association Certified Ruby Programmer

The Ruby Association Certified Ruby Programmer examinations are intended for enginesrs who design, develop, and/or operate Ruby-based systems,
consultants who make Ruby-based system proposals, and instructors who teach Ruby.

Those who are certified are recognized for their skills as Ruby engineers and as having high levels of Ruby-based system development capabilities.
Those who pass the examination are certified by the Ruby Association as a Ruby Association Certified Ruby Programmer.

Registration of Ruby Association Certified Programmer (Prometric Site)

Overview and purposes of certification examinations

The overall purpose of the certification program is to:

1. Set a standard by which goals can be set for studying and teaching Ruby

2. Set a standard by which Ruby engineers can measure and prove their skill level

3. Set a decision-making standard for companies and other entities seeking to hire Ruby engineers or outsource
development projects

The certification examinations are linked to the different sets of qualifications required for certification as a Ruby Association Certified Ruby
Programmer, and there is a certification examination that corresponds to each set of qualifications. The Ruby Association will issue a
certificate to those who pass the examinations.

Speedup Ruby interpreter, Koichi Sasada,
DeccanRubyConf2014

Advertisement

7 Rl.l by ASSOCIatIOI‘I http://www.ruby.or.jp/en/news/20140627.html

A About Us Certification

TOP = Mews = Ruby prize 2014 Award is now accepting nominations

I The Ruby Prize Award 2014 now accepting nominations

It has been decided to hold the Ruby Prize2014, to
recognize the efforts of New members to the Ruby community.

http://www.ruby.or.jp/en/news/20131018e.html

This "Ruby Prize" will hold meetings by the executive committee Ruby Prize winner Tomoyuki Chikanaga and finale nominees are celebrated at the
comprised of three parties, which is Ruby Association, RubyWorld conference.
Nihon Ruby no Kai and Matsue city. Congrats!

Ruby Prize Award Winner and nominees will receive an
award at the RubyWorld Conference 2014, to be held in Matsue, Shimane
Prefecture November 13th & 14th

It should be noted the winner of the Ruby Prize will also be awarded
sub-prize money of 1million yen!

See last year's Ruby Prize 2013

Speedup Ruby interpreter, Koichi Sasada,
DeccanRubyConf2014

Advertisement

http://www.rubyworld-conf.org/

RubyWorld Conference 2014 en | ja |
Cosn
Ah—A HASE JO05 A =2 ENEsE SEVSHE AR —

RubyWor ld
Conference

2014

Nov.13-14
Matsue
Japan
JOJS3/E5E IRubyl (3. 2013FE28(ICZOBENS20EF MR 3 EEEIC. SERDOATv—)(— ‘ BREFESSICOVT I
£33 & UTRUbY2.05° L — X 1. Ruby(ZFi-REAAEZEA L. BaMNEETORMBEN N> TVE
9 PfEmEE
SET6EHR &723RubyWorld ConferenceZiB U T. FUWERDERE(CEA LD DHBRubyh'. SH72HR BT P
EHRICEDESICEESL. BELTVKDN. ZOLINERBELRELEZ ZRSFERICIRBLL BE- &8 - %8
F9. 28
BEass) BrkEE

Speedup Ruby interpreter, Koichi Sasada,
DeccanRubyConf2014

— Advertisement

r 4

1| heroku

Heroku, Inc. http://www.heroku.com

You should know about Heroku!!

r .. . — - -
heroku Features Pricing Add-ons Blog Documentation Support Contact Log in Sign up

Build, run, and scale apps.

Cloud computing designed and built for developers.

Sign up for free

Mo credit card required

Speedup Ruby interpreter, Koichi Sasada,
DeccanRubyConf2014

http://www.heroku.com/

Advertisement

14
h heroku Features Pricing Add-ons Blog Documentation Support Contact Dashboard Logout

Features

Build and Run Your Apps, Your Way.

Heroku supports Ruby, Node.js, Python, Java, and PHP so you can use the languages you already
know to build and deploy apps on Heroku. Learn more about our language support or sign up now.

L < nedes le

Java

Check https: ww.heroku.co eatures
DeccanRubyConf2014

https://www.heroku.com/features

———

g/

heroku

* Heroku, Inc. http://www.heroku.com

* Heroku supports OSSs / Ruby development
* Many talents for Ruby, and also other languages
* Heroku employs 3 Ruby interpreter core

developers
* Matz
* Nobu
* Kol (me)

* We name our group “Matz team”

Speedup Ruby interpreter, Koichi Sasada,

DeccanRubyConf2014

http://www.heroku.com/

Hlheroku
“Matz team”

!
5 Hm
o

Nobu @ Tochigi
Patch monster

BES

ST R i
‘EEOE AP Hllio =]
O ek
(o3 ={""]
,% BE8
Matz @ Shimane 0l @ Tokyo
T|t|e COI Iector Speedup Ruby interpreter, Koichi Sasada,

DeccanRubyConf2014 EDD developer

heroku
Matz

Title collector

* He has so many (job) title
e Chairman - Ruby Association
* Fellow - NaCl
e Chief architect, Ruby - Heroku
e Research institute fellow — Rakuten
e Chairman — NPO mruby Forum
* Senior researcher — Kadokawa Ascii Research Lab
 Visiting professor — Shimane University
* Honorable citizen (living) — Matsue city
* Honorable member — Nihon Ruby no Kai

* This margin is too narrow to contain

Speedup Ruby interpreter, Koichi Sasada,
DeccanRubyConf2014

Hlheroku
Nobu

Patch monster

* Great patch creator

Speedup Ruby interpreter, Koichi Sasada,
DeccanRubyConf2014

heroku
Nobu is

Great Patch I\/Ionster

RildckAST 5 YEARS

nobu
ma rE% 29%

2
tenderlgve
29¢zak
kagy
kod%ki

dﬁ%5h1
0,

3% kol

4%ysa

akr
12%

4% 9%

Speedup Ruby interpreter, Koichi Sasada,
DeccanRubyConf2014

8/TT/€T0T

=

O m 8/6/€10¢

O

20

= 8/L/€T0C
T e

\ 8/S/€10¢C

8/€/€10¢

2013

8/T/€10C

/=g 8/11/T10e

8/6/710¢

RubyKaigi

Ruby 2.0

RubyConf
2012

8/1/210C
8/8/T10C
8/€/T10C

8/1/710¢

Commit number of ko1 (last 3 years)

— 8/11/110C
- 8/6/110¢
— 8/L/TT0T
8/S/110¢
8/€/110¢

8/T/110¢

S
9,
Q
O
0,
>
@
9
O
O
Ll

8/T1/010¢

25
20
15
10
5
0

Hlheroku
Kol

Event Driven Development

EDD

heroku

“Mission of Matz team”

Improve quality of
next version of CRuby

heroku

“Mission of Matz team”

* Improve quality of next version of CRuby
* Matz decides a spec finally
* Nobu fixed huge number of bugs
* Kol improves the performance

* Next version of CRuby is “Ruby 2.2.0”

http://www.flickr.com/photos/loginesta/5266114104

Ruby 2.1
Current stable

Speedup Ruby interpreter, Koichi Sasada,
DeccanRubyConf2014

Ruby 2.1
a bit old Ruby

* Ruby 2.1.0 was released at 2013/12/25

e New features
 Performance improvements

* Ruby 2.1.1 was released at 2014/02/24

* Includes many bug fixes found after 2.1.0 release

* Introduce a new GC tuning parameter to change
generational GC behavior (introduce it later)

* Ruby 2.1.2 was released at 2014/05/09

* Solves critical bugs (OpenSSL and so on)

Ruby 2.1 the biggest change
Version policy

* Change the versioning policy
* Drop “patch level” in the version
e Major version: Big language changes (or anniversary)
* Minor version: minor language changes (or annually)
* Teeny version: fixing bugs with compatibility
* Release new teeny versions about every 3 month
* Teeny upgrades keep compatibility

Ruby 2.1 New syntax

* New syntaxes

* Required keyword
parameter

e Rational number literal
* Complex number literal

e ‘def’ returns symbol of
m et h O d n a m e http://www.flickr.com/photos/rooreynolds/4133549889

Speedup Ruby interpreter, Koichi Sasada,
DeccanRubyConf2014

Ruby 2.1 Syntax
Required keyword parameter

def foo(a:1, b:)

end

foo(a: 1, b: 2) # OK
foo() # NG
foo(a: 1) # NG

Ruby 2.1 Syntax
Required keyword parameter

» Keyword argument (from Ruby 2.0.0)
e def foo(a: 1, b: 2); end
 'a’ and b’ are optional parameters
e OK: foo(); foo(a: 1); foo(a: 1, b: 2); foo(b: 2)

* Required keyword argument from 2.1
* def foo(a: 1, b:)
e 'a’ is optional, but 'b’ is required parameter
e OK: foo(a: 1, b: 2); foo(b: 2)
* NG: foo(); foo(a: 1)

Ruby 2.1 Syntax
Rational number literals

1/2r #=> Rational(1, 2)

Ruby 2.1 Syntax
Rational number literals

* To represent %5, in Ruby “Rational(1, 2)”
— Too long!!

o7
r

* Introduce suffix

> 1/2r
e “Idigits]r” represents “Rational([digits], 1)”
%> 1/2r

e 1/2r #=> 1/Rational(2, 1)
* 1/Rational(2, 1) #=> Rational(1/2)

Ruby 2.1 Syntax
Complex number literals

1+2i #=> Complex(1, 2)

Ruby 2.1 Syntax
Complex number literals

* We already have “Integer#i” method to make
imaginary number like “1+2.i"

* We already introduced “r” suffix for Rational
—> No reason to prohibit “i” suffix!!

* [digits]i represents “Complex(0, [digits])”

e 1+2i #=> 1+Complex(0, 2)

* 1+Complex(0, 2) #=> Complex(1, 2)

* You can mix “r” and “i” suffix

Ruby 2.1 Syntax
Return value of det’ syntax

def foo()

end
#=> :foo

Ruby 2.1 Syntax
Return value of det’ syntax

e Return value of method definition

* Method definition syntax returns symbol of
defined method name

e ‘def foo; ...; end’ #=> :foo

* Method modifier methods

* Example:
* private def foo; ...; end
 public static void def main(args); ...; end

Ruby 2.1 Runtime new features

 String#fscrub

* Process.clock gettime

* Bindingtlocal variable get/set

* Bignum now uses GMP (if available)
* Extending ObjectSpace

Performance improvements

e Optimize “string literal”.freeze
* Sophisticated inline method cache
* Introducing Generational GC: RGenGC

RGenGC: Generational GC for Ruby

e RGenGC: Restricted Generational GC

* Generational GC (minor/major GC uses M&5)
 Dramatically speedup for GC-bottleneck applications

* New generational GC algorithm allows mixing “Write-
barrier protected objects” and “WB unprotected objects”

- No (mostly) compatibility issue with C-exts
* Inserting WBs gradually

* We can concentrate WB insertion efforts for major objects
and major methods

* Now, most of objects (such as Array, Hash, String, etc.) are
WB protected
* Array, Hash, Object, String objects are very popular in Ruby

* Array objects using RARRAY_PTR() change to WB unprotected
objects (called as Shady objects), so existing codes still works.

RGenGC
Performance evaluation (RDoc)

,314

£

=

= 10

5

P About x15 speedup!
g 4

£ o

Total mark time (ms) Total sweep time (sec)

B w/o RGenGC ™M RGenGC
* Disabled lazy sweep to measure correctly.

Speedup Ruby interpreter, Koichi Sasada,
DeccanRubyConf2014

Speedup Ruby interpreter, Koichi Sasada,
cccccccccccccccccc

Schedule of Ruby 2.2

* Not published officially

e Schedule draft is available by Naruse-san

* https://bugs.ruby-lang.org/projects/ruby-
trunk/wiki/ReleaseEngineering2?

Speedup Ruby interpreter, Koichi Sasada,
DeccanRubyConf2014

https://bugs.ruby-lang.org/projects/ruby-trunk/wiki/ReleaseEngineering22

Ruby 2.2 schedule
e = e 2014/12/25
herel Ruby 2.2.0

RubyConf

Deccan Brasil

RubyConf 8/28, 29 RubyConf
7/19 RubyKaigi 11/17, 18, 19
9/18, 19, 20

Events are important for
EDD (Event Driven Development) Developers

Speedup Ruby interpreter, Koichi Sasada,
DeccanRubyConf2014

2013/12
Ruby 2.1.0

Ruby 2.2 (rough) schedule

2013/12

Ruby 2.1.0

2014/12/25
Ruby 2.2.0

Sep/2014

Preview 1

26t Jul/2014

. Nov/2014
Dev. Meeting Bug fix onl\> Preview?2

Aug/2014 Dec/2014
Dev. Meetmg Critical Bug fix onl\> Release

candidate

Speedup Ruby interpreter, Koichi Sasada,
DeccanRubyConf2014

2.2 big features (planned)

* New syntax: not available now

* New method: no notable methods available
now

e Libraries:

* Minitest and test/unit will be removed (provided by
bundled gem)

2.2 internal changes

* Internal
e CAPIs

* Hide internal structures for Hash, Struct and so on
e Remove obsolete APIs

* GC

 Symbol GC (merged recently)

* 2age promotion strategy for RGenGC

* Incremental GC to reduce major GC pause time
* VM

* More sophisticated method cache

Ruby 2.2 internals
Symbol GC

1 000 000.times{]|i| i.to_s.to _sym}
p Symbol.all_symbols.size

Ruby 2.1
#=> 1,002,376
Ruby 2.2 (dev)

#=> 25,412

Ruby 2.2 internals
Symbol GC

e Symbols remain forever - Security issue
e “n.times{|i| i.to_s.to_sym}”

o_ 7

creates “n” symbols and they are never collected

* Symbol GC: Collect dynamically created symbols

£
o

BREAK

SCIME

%

<
“

http://w‘.flickr.com/photo/okyoey/842265722

Break

Speedup Ruby interpreter, Koichi Sasada,
DeccanRubyConf2014

Speedup
Ruby Interpreter

How do we speed up Ruby interpreter?

Software consists of
many components

Ruby’s components

Bundled Gem
Libraries Libraries
Embedded

classes and methods
(Array, String, ...)

Compile Obj
| ject
Threading Evaluator management(GC)
Ruby |
Bytecode

- Interpret on RubyVM

Speedup Ruby interpreter, Koichi Sasada,
DeccanRubyConf2014

Working for core components

*Core components I’'m working for:
 Evaluator (10 years)
* Thread management (10 years)
* Memory management (few years)

History of Ruby interpreter

1993 2/24
Birth of Ruby 1996/12 1999/12 2003/8 2013/2
(in Matz’ computer) Ruby 1.0 Ruby 1.4 Ruby 1.8 Ruby 2.0
1995/12 1998/12 2000/6 2009/1 2013/12
Ruby 0.95 || Ruby 1.2 | | Ruby 1.6 Ruby 1.9.0 Ruby 2.1.0
15t release
2004/1

YARV development

2013/3
RGenGC

Speedup Ruby interpreter, Koichi Sasada,
DeccanRubyConf2014

Introduce our effort
(especially my contributions)
to speedup Ruby interpreter

Evaluator

Bundled Gem
Libraries Libraries
Embedded

classes and methods
(Array, String, ...)

Compile Ob;
| ject
Threading | Evaluator management(GC)
Ruby
Bytecode

_— Interpret on RubyVM

Speedup Ruby interpreter, Koichi Sasada,
DeccanRubyConf2014

Evaluator

* Named YARV: Yet another RubyVM
* Start until 10 years ago (2004/01/01)
* Simple stack machine architecture
* Execute each bytecode instructions one by one

* Apply many known optimization techniques

Evaluator
Compile Ruby to AST

Ruby Program Abstract Syntax Tree

Parse
Method
Dispatch(:+)

a=b+cC

Evaluator
Compile AST to Bytecode

Abstract Syntax Tree

Method
Dispatch(:+)

VM Instructions

j> getlocal b

getlocal ¢
send +
setlocal a

Tree data Sequential data

Evaluator
Execution as stack machine

Ruby Program
a=b+c

b+c

Compile b
i

YARV Instructions

: getlocal b
: getlocal ¢
~ send +
| setlocal

VM Stack

|

Evaluator
Optimizations

* Apply many techniques to improve performance
* Peephole optimizations
* Specialized instructions
e Stack frame layout
 Efficient exception handling
* Efficient block representation
* Direct threading
 Stack caching
* Instructions and operands unifications

ury TSN AT

R TERR 10 B ARG R
245 EhEmS SEAmBE. Jobroa
AUST YoM S puda Ruby:®v—3 o
YARY Shack AR Sun% by I Y ‘”Zym "‘f B ™ CYREEEY U e
: J07P13 and RUDMBREHE HOR R re o]
Hsctetall Y, B4 FAIID NS IFER) \ RMENMARS 2%, L | BETRE]
= = £l = =
S 22 23 24 25 26
o) BEW: MU 7D RITR (X N 7= \
RREW: MultsVH AR5 R I VARV ok RIS VM
BE RS 13021V BHATIZSZ W Raby) §— 4 HR Sy wEn AR
e e I HIC RubyI 054~ REA :
) Rubiy hEmrE Er (V) 5 2 SRRV 4
oyl AR T GC RS BEDEDEAR oubTU
mwuuzsuz yzT D o
L JUEFAIEH BN HEARRERL A EE Woiiner
e Ee l INEE T [T
LS AR AL \) \ Qe
o = = = 0
31 32 33 34 35 36 37
2, / \ T ——— —
((i
¥ A BwH L - Aiwith E=T} Hat: Mana &3t (e Tt - Skid .23 e D Y L OVl B Beift: 00) Lo BB A
Rbyl AL T E 1 & TS | wuemnomem e (eiomrs RADYP— DIz HE settrace_Tic: RHT T QErREL GCC
PIAIRARARIZ 22 MR [— LA ¥aLk3? SaLakalaryFank T 1% LB MR T3 - G t=4
Rty 2502 ELETF LA Attt s rro) A0 KRR e Adoih A o S Eras w
setmpAnngimp 2 £ 3 MRS BE e AdunIL- LORULIE P (eubtoh i jvt x‘v:‘m A AT IR TR m
wv’?llﬁ 2 ko = WEBRIZF K7D -T2 PR Dun% oA Rutym®N 1S Sz AREARLTIL o
DA M BRI ABTIRE L AL~ FAERETECE A oL LA Do GEALI- FHI AT IR C %
L RIURSuInRER LERR, J W 20 I DA / \ R FAO0 S URES i
41 42 43 44 45 46 47
{ / \ N N\ s /
A Sy Era RS BB 092 DD E o | m#it:02745 B 74 5 TVIUSD Rl 70 S VMERF [VM ERF
A5 S S, 2L VXD AR EID w0 Xt = P 7 AT ATS RIS A AN)
| - I e Y D2t dad tpaabgin, p< WD, e
! ‘,«mgaﬁe.nzoww:ug il o v VUL S 25NN a2 AR _.:g;,?,f—m‘ piSrodnkr Al et
A e S0 T I e AR Atk IR B 1
me 250 REBAS dmname auminaision ALCAMEICPCETIL
“ T P AR i | AL T, - L TR GSIEE SEURCh PELL AR comtae PR
oy :‘Q -A.I 3 m ol - Mik:vrgmn 2 S———
FRTIX AN OB L MLALR MR Rl Complier m
; L&), k) \ ; ©pimizy J
51 52 53 54 55 56 57
N ERF: 350D E o U RE (. \ (\ \ f
324 VMERF: I- MINRICMIIHR | Rlutesibown ALwPEFILOREM} Ab“)?‘ETmeM("? ALUFEFILOBI(E} | ZLuFEFILOEMIERD!
N ERER hdel Ihdel 3:
J ot v ma Ay — Sy HER R Doovend iy bim it Nale mm wAh Gl VI Lok Nale Fea wih Fire Gran Lock | Modaf;|Moce| 2} Mok 13
&SR LYASTD nawy L) g Scambiy | Bad |Bad? | Best
BRIC !;I‘;": m& i od el 2. Maiwmdh mxd wih pard M Boh Desiel Dreis L Dice, i - -
T 1 Si AR Vot Cits TCHEMTRT — 4nsc Al Lame s ameiButs usroue caTheR mm’(' | No Some | High
EWERIBCAVE 22T LB T o D TP i L asspesrmmrms st
-3 FEREA MO M Far b #resds b parall mpl. — INorm. [Easy [Hard
& v > | R] '“/ (| ot | 3oL
- - R = N Porbiy |Good | Bad | Bad
61 62 63 64 65 66 67
N e — 2 o o =% Fe e —
((" R by m -3 BRI | Rubyeme—-3 BRI | Rubymz- 3 [+ 1311
% Eifl{cont.} Eifl{cont.} BB Rubyry 7- 72 MY 2 RRLEVI ML FHE M E RV ML Pl DR Mt e
HHW (LT VARY ROERE RiE ORUb; ORI [E2 AR 53 M ML 5 i ook = S5
5 rotMET: | | YARVD.A0 UU-3 @IE0222) AN ks, STasseriors CodonParer, mh 13k en 5l ety sk
- < | EIE A b TR R Ruby oot A HC ey ke oo bt
& SR | Ruby 15 (DS) fIZASE 1811 kS ATER BsEiIons \'bn:’v:;m.n e IndiEBuEy rvia
VARY (ol M 16200 & 1¢ Wlues, Demoes = , Hi INEAAL WEEN.
P erie ot :::Pelmn'ln pasa .
L \) 9 L FUAFTEGD P | e
= = E w - - = p—
Fa 72 73 74 75 Hr 76 7
/—‘\ ===~ /7 I P —
[((BEL2| 5 FI AL Eicont p
| BO:&FIEHSHNY BB 900 A F - DIHAME BRI XTI LIERG BEL2] 57 T3 2w Eicont} /SIS USRI S R RRIR mxz
| 3 o ml:gla 0wt H WEBNSK ERALENTTE < s Walie Feea wth Glant VA Lock o
{v 7 TeRa e or, Hoigssh Bdﬁaar»w [0} o= o
] N a BRSATS U HRALER I H LE
{33 nf2 D%uqzr:xanmu-em-r 3 i
IR e T L R hread crital Bkt | H [
ad { =, L ALuEoMEEHR-b (lmulz

Evaluator
Optimizations

* Analysis usage
And optimize for frequent cases

* Example: Exception handling

* Exceptions occur *EXCEPTIONAL* so
optimize for no-exception control flow

Performance evaluation
compare with Ruby 1.8

Higher is good

18

16
14 —

12

10

4 -
2

|

amalllam

Ackermann

Array

Fib Pentomino
Matrix

Speedup Ruby interpreter, Koichi Sasada,
DeccanRubyConf2014

Tak

Random

Sieve

Main components

e Evaluator
*Thread management
*Memory management

Compile

Ruby

Threading

Bundled Gem
Libraries Libraries
Embedded

classes and methods
(Array, String, ...)

Threading

Object

Evaluator management(GC)

|

Bytecode
_/

Interpret on RubyVM

Speedup Ruby interpreter, Koichi Sasada,
DeccanRubyConf2014

Threading

* Using native threads for each Ruby threads

 Parallel ruby execution is prohibited by GVL

* You can free GVL if you write a code carefully in C level
and run it in parallel

Threading
Ruby 1.8 and before

Thread 1 Thread 2 Thread 1
ﬁ —
OS Thread 1

O
)
C
[EY

@)
o
C
N

Threading
Layered view

/Native Thread
System S/W

SIW- J

H/W

'|
[Processor(s) ‘ ‘ ‘ }

Speedup Ruby interpreter, Koichi Sasada,
DeccanRubyConf2014

Threading
Ruby 1.9 and later

Native threads with Giant VM Lock

Thread 1 Thread 1
el

ﬁ
CPU 1 @ | OS Thread 1
Thread 2 @

OS Thread 2

Threading
Layered view

/Native Thread
System S/W ° °

S/W _

H/W

[Processor(s)

Speedup Ruby interpreter, Koichi Sasada,
DeccanRubyConf2014

Threading
Why GVL?

* To protect Ruby users from nightmare
debugging

e Shared parallel threading can make non
deterministic bugs which is too hard to debug

* Disadvantage

* CRITICAL ISSUE: No parallel programming in
Ruby

* Need another programming model for parallel

e Current *SHARED EVERYTHING* model is not match

e Correct isolation level for each parallel execution
units

Object management (GC)

Bundled Gem
Libraries Libraries
Embedded

classes and methods
(Array, String, ...)

Compile Ob;j
| ject
Threading Evaluator management(GC)
Ruby I
Bytecode

_— Interpret on RubyVM

Speedup Ruby interpreter, Koichi Sasada,
DeccanRubyConf2014

Object and memory management

* “Object.new” allocate a new object
* “foo” (string literal) also allocate a new object
* Everything are objects in Ruby!

* We don’t need to “de-allocate” objects manually

Garbage collection
The automatic memory management

http://www.flickr.com/photos /circasassy, /6817999189 /

Automatic memory management
Basic concept

* Garbage collector recycled “unused” objects
automatically

Speedup Ruby interpreter, Koichi Sasada,
DeccanRubyConf2014

Mark & Sweep algorithm

Root objects

marked

traverse

marked marked

traverse

traverse

1.

Mark reachable
objects from root
objects

Sweep unmarked
objects (collection
and de-allocation)

objects

Collect unreachable

marked marked :

Speedup Ruby interpreter, Koichi Sasada,

DeccanRubyConf2014

Generational GC (GenGC(C)

* Weak generational hypothesis:
“Most objects die young”

WARNING! WARNING! WARNING! WARNING! WARNING!

Fast Workers

Die Young!
Take a break

IWW - a Union forrlrllfg.igggl'h.-__rg.‘

http://www.flickr.com/photos/ell-r-brown/5026593710

- Concentrate reclamation effort
only on the young objects

Speedup Ruby interpreter, Koichi Sasada,
DeccanRubyConf2014

Generational hypothesis

Object lifetime in RDoc
(How many GCs surviving?)

95% of objects dead by the first GC

10

Percentage of dead object#

0

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102

Lifetime (Survibing GC count)

Speedup Ruby interpreter, Koichi Sasada,
DeccanRubyConf2014

Generational GC (GenGC(C)

e Separate young generation and old generation
* Create objects as young generation
* Promote to old generation after surviving n-th GC

* In CRuby, n == 1 (after 1 GC, objects become old)
 n==2 from Ruby 2.2 (plan)

e Usually, GC on young space (minor GC)
* GC on both spaces if no memory (major/full GC)

GenGC [Minor M&S GC] (1/2)

15t MinorGC Root obiect Mark reachable objects from
| OO0t Objects root objects.

 Mark and promote to old

generation
@ e Stop traversing after old

traverse

objects
traverse traverse

collect —> Reduce mark overhead

e Sweep not (marked or old)

objects
traverse
e Can’t collect Some
free unreachable objects

Don’t collect old object
eversda‘eii;wwrrea@laabkemhi Sasada,

DeccankubyContZ014

GenGC [Minor M&S GC] (2/2)

2n MinorGC Root obiect * Mark reachable objects from
| oot objects root objects.

 Mark and promote to old

generation
@ e Stop traversing after old

traverse

objects
ignore

collect —> Reduce mark overhead

e Sweep not (marked or old)

objects
ignore
* Can’t collect Some
free unreachable objects

Don’t collect old object
evemdieiijmwrrea@laabkeichi Sasada,

DeccankubyContZ014

GenGC [Major M&S GC]

e Normal M&S

* Mark reachable objects from

root objects
@ Mark and promote to old gen

* Sweep unmarked objects

Root objects

traverse traverse
collect

 Sweep all unreachable
(unused) objects

traverse

old/
free

collect

Speedup Ruby interpreter, Koichi Sasada,
DeccanRubyConf2014

RGenGC
Performance evaluation (RDoc)

,314

£

=

= 10

5

P About x15 speedup!
g 4

£ o

Total mark time (ms) Total sweep time (sec)

B w/o RGenGC ™M RGenGC
* Disabled lazy sweep to measure correctly.

Speedup Ruby interpreter, Koichi Sasada,
DeccanRubyConf2014

RGenGC
Performance evaluation (RDoc)

140

16.04393815

[HY
N
o

4.946003494
100

80
60
40
20

Total execution time (sec)

w/0o RGenGC RGenGC
MW other than GC m GC

* 12% improvements compare with w/ and w/o RGenGC

* Disabled ﬂ%eﬁpﬂééﬁeuﬁéiﬁééﬁﬂ r&torrectly.

Speedup
Ruby Interpreter

How to speed up Ruby interpreter?

DO EVERYTHING!
NO SILVER BULLET!

Bundled Gem
Libraries Libraries
Embedded

classes and methods

(Array, String, ...)

Object

Threading Evaluator management(GC)

Ruby
Bytecode
Interpret on RubyVM

DO EVERYTHING!
NO SILVER BULLET!

We did.
We are doing.
We will do!!

Only continuous effort
improves software quality.

Future work: Many many many!!

* Evaluator
* JIT compilation
* More drastic optimizations

* Threading

* Parallel execution model (not a thread?)

* Object management and GC
* Incremental GC
* Compaction GC
 Lightweight object allocation

Summary

* Ruby 2.1 and Ruby 2.2

* How to speed up Ruby interpreter?
* Evaluator
* Threading
* Object management / Garbage collection

One answers is:
#=> Continue software development

Thank you for your attention
Q&A?

With slowly/clearly English, thank you.

Koichi Sasada

<kol@heroku.com>

Hlheroku

Speedup Ruby interpreter, Koichi Sasada,
DeccanRubyConf2014

