
Toward efficient
Ruby 2.1

Koichi Sasada
<ko1@heroku.com>

Heroku, Inc.
RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 1

Agenda

ÅRuby 2.1 Schedule
Åwǳōȅ нΦм ƴŜǿ άƛƴǘŜǊƴŀƭέ ŦŜŀǘǳǊŜǎ
ÅInternal object management hooks
ÅObject allocation tracing
ÅGC hooks

ÅRGenGC: Restricted Generational Garbage
Collectionҥ ¢ƻŘŀȅΩǎ Ƴŀƛƴ ǘƻǇƛŎ

Åwǳōȅ нΦм ŜȄǇŜŎǘŜŘ άƛƴǘŜǊƴŀƭέ ŦŜŀǘǳǊŜǎ
ÅSophisticated inline cache invalidation mechanism
ÅMemory efficient string management
ÅUseful debugger

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 2

Summary

ÅWe are implementing new features and
ƛƳǇǊƻǾƛƴƎ wǳōȅΩǎ ǉǳŀƭƛǘȅ ŦƻǊ wǳōȅ нΦм

Å9ǎǇŜŎƛŀƭƭȅ ƛƴǘǊƻŘǳŎƛƴƎ άDŜƴŜǊŀǘƛƻƴŀƭ garbage
ŎƻƭƭŜŎǘƻǊέ ǿƘƛŎƘ LΩƳ ǿƻǊƪƛƴƎ ƻƴ ǿƛƭƭ ƛƳǇǊƻǾŜ
huge performance

ÅRuby 2.1 is currently scheduled on Dec 25,
2013

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 3

Quoted “2.1”

άнΥм And there went a man of the house of
Levi, and took to wife a daughter of LeviΦέ

-Book of Exodus

άнΥм
έ

-

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 4

Quoted “2.1”

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 5

In this presentation,
ǘƘŜǊŜ ŀǊŜ ǎƻƳŜ ǉǳƻǘŜŘ άнΦмέ ǎŜƴǘŜƴŎŜΦ

LŘŜŀ ƻŦ άvǳƻǘƛƴƎέ ƛǎ ŦǊƻƳ
ά¢ƘƛƴƎǎ a Computer Scientist wŀǊŜƭȅ ¢ŀƭƪǎ !ōƻǳǘέ
ά έ

by Donald E. Knuth
But no consideration in this presentation about them.

Who am I ?

Å (Koichi Sasada)
ÅMatz team at Heroku, Inc.
ÅFull-time CRuby development

ÅCRuby/MRI committer
ÅVirtual machine (YARV) from Ruby 1.9
ÅYARV development since 2004/1/1

6

7

ko1@ Tokyo
EDD developer

Matz @ Shimane
Title collector

Communication
with Skype

Matz team at Heroku, Inc.
Hierarchy

Nobu@ Tochigi
Drunker

Recent status

Å5/2 I got ǎǇǊŀƛƴΧ

Åрκнт L Ǝƻǘ ŎƻƭŘΧ

ÅAll: Please care about
yourself
ÅEspecially, do not walk
with book reading

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 8

My leg with a bivalve cast

άhōƧŜŎǘ-oriented scripting language Ruby is a
ǇǊƻƎǊŀƳƳƛƴƎ ƭŀƴƎǳŀƎŜ ŘŜǎƛƎƴŜŘ ōȅ aŀǘǎǳƳƻǘƻΦέ

- Efficient Implementation of Ruby Virtual Machine

Doctoral thesis by Koichi Sasada

ά Ruby
έ

- Ruby

,

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 9

Quoted “2.1”

Ruby’s rough history

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 10

1993 2/24
Birth of Ruby
(in MatzΩ ŎƻƳǇǳǘŜǊύ

1995/12
Ruby 0.95
1st release

1996/12
Ruby 1.0

1998/12
Ruby 1.2

1999/12
Ruby 1.4

2000/6
Ruby 1.6

2003/8
Ruby 1.8

2009/1
Ruby 1.9.0

2013/02
Ruby 2.0.0

2004
Ruby on Rails

2000 Book:
Programming Ruby

2012/4
ISO Ruby

2004/1
Start YARV proj.

Quoted “2.1”

άнΦм /ƘŀƴƎŜǎ ŦǊƻƳ wǳōȅ мΦф
Added and modified libraries from Ruby 1.9 are
Ŧƻƭƭƻǿǎέ

- Programming Ruby 1.9 Library edition

by Dave Thomas, with Chad Fowler and Andy Hunt

άнΦм wǳōȅ мΦф
Ruby 1.9

έ
- Ruby 1.9

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 11

Ruby 2.0

ÅNew features (see Rubyist Magazine)
ÅKeyword arugments
ÅRefinements
ÅModule#prepend

ÅRuby 2.0.0-p195 was already released

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 12

-*- rdoc-*-

= NEWS for Ruby 2.0.0

This document is a list of user visible feature
changes made between

releases except for bug fixes.

Note that each entry is kept so brief that no reason
behind or

reference information is supplied with. For a full
list of changes

with all sufficient information, see the ChangeLog
file.

== Changes since the 1.9.3 release

=== C API updates

* NUM2SHORT() and NUM2USHORT() added. They
are similar to NUM2INT, but short.

* rb_newobj_of() and NEWOBJ_OF() added. They
create a new object of a given class.

=== Library updates (outstanding ones only)

* builtin classes

* Array

* added method:

* added Array#bsearchfor binary search.

* incompatible changes:

* random parameter of Array#shuffle! and
Array#samplenow

will be called with one argument, maximum
value.

* when given Range arguments, Array#values_at
now returns nil for each

value that is out-of-range.

* Enumerable

* added method:

* added Enumerable#lazymethod for lazy
enumeration.

* Enumerator

* added method:

* added Enumerator#sizefor lazy size
evaluation.

* extended method:

* Enumerator.newaccept an argument for lazy
size evaluation.

* ENV

* aliased method:

* ENV.to_his a new alias for ENV.to_hash

* Fiber

* incompatible changes:

* Fiber#resumecannot resume a fiber which
invokes "Fiber#transfer".

* File

* extended method:

* File.fnmatch? now expands braces in the
pattern if

File::FNM_EXTGLOB option is given.

* GC

* improvements:

* introduced the bitmap marking which
suppresses to copy a memory page

with Copy-on-Write.

* introduced the non-recursive marking which
avoids unexpected stack overflow.

* GC::Profiler

* added method:

* added GC::Profiler.raw_datawhich returns
raw profile data for GC.

* Hash

* added method:

* added Hash#to_has explicit conversion
method, like Array#to_a.

* extended method:

* Hash#default_proc= can be passed nil to clear
the default proc.

* Kernel

* added method:

* added Kernel#Hashconversion method like
Array() or Float().

* added Kernel#using, which imports
refinements into the current scope.

[experimental]

* added Kernel#__dir__ which returns a current
dirname.

* added Kernel#caller_locationswhich returns
an array of

frame information objects.

* extended method:

* Kernel#warnaccepts multiple argsin like puts.

* Kernel#calleraccepts second optional
argument `n' which specify

required caller size.

* Kernel#to_enumand enum_foraccept a block
for lazy size evaluation.

* incompatible changes:

* system() and exec() closes non-standard file
descriptors

(The default of :close_othersoption is changed
to true by default.)

* respond_to? against a protected method now
returns false unless

the second argument is true.

* __callee__ has returned to the original
behavior, and now

returns the called name but not the original
name in an

aliased method.

* Kernel#inspectdoes not call #to_sanymore

(it used to call redefined #to_s).

* LoadError

* added method:

* added LoadError#pathmethod to return the
file name that could not be

loaded.

* Module

* added method:

* added Module#prependwhich is similar to
Module#include,

however a method in the prepended module
overrides the

corresponding method in the prepending
module.

* added Module#refine, which extends a class
or module locally.

[experimental]

* added Module#refinements, which returns
refinements defined in the

receiver. [experimental]

* added Module#using, which imports
refinements into the receiver.

[experimental]

* extended method:

* Module#define_methodaccepts a
UnboundMethodfrom a Module.

* Module#const_getaccepts a qualified
constant string, e.g.

Object.const_get("Foo::Bar::Baz")

* Mutex

* added method:

* added Mutex#owned? which returns the
mutex is held by current

thread or not. [experimental]

* incompatible changes:

* Mutex#lock, Mutex#unlock, Mutex#try_lock,
Mutex#synchronize

and Mutex#sleepare no longer allowed to be
used from trap handler

and raise a ThreadErrorin such case.

* Mutex#sleepmay spurious wakeup. Check
after wakeup.

* NilClass

* added method:

* added nil.to_h which returns {}

* Process

* added method:

* added getsidfor getting session id (unixonly).

* Range

* added method:

* added Range#sizefor lazy size evaluation.

* added Range#bsearchfor binary search.

* Signal

* added method:

* added Signal.signamewhich returns signal
name

* incompatible changes:

* Signal.trapraises ArgumentError
when :SEGV, :BUS, :ILL, :FPE, :VTALRM

are specified.

* String

* added method:

* added String#breturning a copied string
whose encoding is ASCII-8BIT.

* change return value:

* String#linesnow returns an array instead of an
enumerator.

* String#charsnow returns an array instead of
an enumerator.

* String#codepointsnow returns an array
instead of an enumerator.

* String#bytesnow returns an array instead of
an enumerator.

* Struct

* added method:

* added Struct#to_hreturning values with keys
corresponding to the

instance variable names.

* Thread

* added method:

* added Thread#thread_variable_getfor getting
thread local variables

(these are different than Fiber local variables).

* added Thread#thread_variable_setfor setting
thread local variables.

* added Thread#thread_variablesfor getting a
list of the thread local

variable keys.

* added Thread#thread_variable? for testing to
see if a particular thread

variable has been set.

* added Thread#backtrace_locationswhich
returns similar information of

Kernel#caller_locations.

* incompatible changes:

* Thread#joinand Thread#valuenow raises a
ThreadErrorif target thread

is the current or main thread.

* Time

* change return value:

* Time#to_sreturned encoding defaults to US-
ASCII but automatically

transcodes to Encoding.default_internalif it is
set.

* TracePoint

* new class. This class is replacement of
set_trace_func.

Easy to use and efficient implementation.

* toplevel

* added method:

* added main.define_methodwhich defines a
global function.

* cgi

* Add HTML5 tag maker.

* CGI#headerhas been renamed to
CGI#http_headerand

aliased to CGI#header.

* When HTML5 tagmakercalled, overwrite
CGI#header,

CGI#headerfunction is to create a <header>
element.

* iconv

* Iconvhas been removed. Use String#encode
instead.

* io/wait

* new features:

* added IO#wait_writablemethod.

* added IO#wait_readablemethod as alias of
IO#wait.

* net/http

* new features:

* Proxies are now automatically detected from
the http_proxyenvironment

variable. See Net::HTTP::new for details.

* gzipand deflate compression are now
requested for all requests by

default. See Net::HTTP for details.

* SSL sessions are now reused across connections
for a single instance.

This speeds up connection by using a previously
negotiated session.

* new methods:

* Net::HTTP#local_host

* Net::HTTP#local_host=

* Net::HTTP#local_port

* Net::HTTP#local_port=

* extended method:

* Net::HTTP#connectuses local_hostand
local_portif specified.

* net/ imap

* new methods:

* Net::IMAP.default_port

* Net::IMAP.default_imap_port

* Net::IMAP.default_tls_port

* Net::IMAP.default_ssl_port

* Net::IMAP.default_imaps_port

* objspace

* new method:

* ObjectSpace.reachable_objects_from(obj)

* openssl

* Consistently raise an error when trying to
encode nil values. All instances

of OpenSSL::ASN1::Primitive now raise TypeError
when calling to_der on an

instance whose value is nil. All instances of
OpenSSL::ASN1::Constructive

raise NoMethodErrorin the same case.
Constructing such values is still

permitted.

* TLS 1.1 & 1.2 support by setting
OpenSSL::SSL::SSLContext#ssl_versionto

:TLSv1_2, :TLSv1_2_server, :TLSv1_2_client
or :TLSv1_1, :TLSv1_1_server

:TLSv1_1_client. The version being effectively
used can be queried

with OpenSSL::SSL#ssl_version. Furthermore, it is
also possible to

blacklist the new TLS versions with
OpenSSL::SSL:OP_NO_TLSv1_1 and

OpenSSL::SSL::OP_NO_TLSv1_2.

* Added
OpenSSL::SSL::SSLContext#renegotiation_cb. A
user-defined callback

may be set which gets called whenever a new
handshake is negotiated. This

also allows to programmatically decline (client)
renegotiation attempts.

* Support for "0/n" splitting of records as BEAST
mitigation via

OpenSSL::SSL::OP_DONT_INSERT_EMPTY_FRAGME
NTS.

* OpenSSLrequires passwords for decrypting
PEM-encoded files to be at least

four characters long. This led to awkward
situations where an export with

a password with fewer than four characters was
possible, but accessing the

file afterwards failed. OpenSSL::PKey::RSA,
OpenSSL::PKey::DSA and

OpenSSL::PKey::EC therefore now enforce the
same check when exporting a

private key to PEM with a password - it has to be
at least four characters

long.

* SSL/TLS support for the Next Protocol
Negotiation extension. Supported

with OpenSSL1.0.1 and higher.

* OpenSSL::OPENSSL_FIPS allows client
applications to detect whether OpenSSL

is running in FIPS mode and to react to the
special requirements this

might impy.

* ostruct

* new methods:

* OpenStruct#[], []=

* OpenStruct#each_pair

* OpenStruct#eql?

* OpenStruct#hash

* OpenStruct#to_hconverts the struct to a hash.

* extended method:

* OpenStruct.newalso accepts an OpenStruct/
Struct.

* pathname

* extended method:

* Pathname#findreturns an enumerator if no
block is given.

* rake

* rake has been updated to version 0.9.5.

This version is backwards-compatible with
previous rake versions and

contains many bug fixes.

See

http://rake.rubyforge.org/doc/release_notes/rake-
0_9_5_rdoc.html for a list

of changes in rake 0.9.3, 0.9.4 and 0.9.5.

* rdoc

* rdochas been updated to version 4.0

This version is largely backwards-compatible with
previous rdocversions.

The most notable change is an update to the ri
data format (ri data must

be regenerated for gems shared across rdoc
versions). Further API changes

are internal and won't affect most users.

See
https://github.com/rdoc/rdoc/blob/master/History
.rdoc for a list of

changes in rdoc4.0.

* resolv

* new methods:

* Resolv::DNS#timeouts=

* Resolv::DNS::Config#timeouts=

* rexml

* REXML::Document#writesupports Hash
arguments.

* REXML::Document#writesupports
new :encoding option. It changes

XML document encoding. Without :encoding
option, encoding in

XML declaration is used for XML document
encoding.

* RubyGems

* Updated to 2.0.0.preview2

RubyGems2.0.0 features the following
improvements:

* Improved support for default gems shipping
with ruby 2.0.0+

* A gem can have arbitrary metadata through
Gem::Specification#metadata

* `gem search` now defaults to --remote and is
anchored like gem list.

* Added --document to replace --rdocand --ri.
Use --no-document to

disable documentation, --document=rdoc to
only generate rdoc.

* Only ri-format documentation is generated by
default.

* `gem server` uses RDoc::Servlet from RDoc4.0
to generate HTML

documentation.

For an expanded list of updates and bug fixes see:

https://github.com/rubygems/rubygems/blob/mas
ter/History.txt

* shellwords

* Shellwords#shellescape() now stringifiesthe
given object using to_s.

* Shellwords#shelljoin() accepts non-string
objects in the given

array, each of which is stringifiedusing to_s.

* syslog

* Added Syslog::Logger which provides a Logger
API atop Syslog.

* Syslog::Priority, Syslog::Level, Syslog::Option and
Syslog::Macros

are introduced for easy detection of available
constants on a

running system.

* tmpdir

* incompatible changes:

* Dir.mktmpdiruses FileUtils.remove_entry
instead of

FileUtils.remove_entry_secure. This means that
applications should not

change the permission of the created temporary
directory to make

accessible from other users.

* yaml

* Syckhas been removed. YAML now completely
depends on libyamlbeing

installed.

* zlib

* Added streaming support for Zlib::Inflate and
Zlib::Deflate. This allows

processing of a stream without the use of large
amounts of memory.

* Added support for the new deflate strategies
Zlib::RLE and Zlib::FIXED.

* Zlibstreams are now processed without the GVL.
This allows gzip, zliband

deflate streams to be processed in parallel.

=== Language changes

* Added %i and %I for symbol list creation (similar
to %w and %W).

* Default source encoding is changed to UTF-8.
(was US-ASCII)

=== Compatibility issues (excluding feature bug
fixes)

* Array#values_at

See above.

* String#lines

* String#chars

* String#codepoints

* String#bytes

These methods no longer return an Enumerator,
although passing a

block is still supported for backwards
compatibility.

Code like str.lines.with_index(1) { |line,
lineno| ... } no longer

works because str.linesreturns an array. Replace
lines with

each_linein such cases.

* Signal.trap

See above.

* Merge Onigmo.

https://github.com/k-takata/Onigmo

* The :close_othersoption is true by default for
system() and exec().

Also, the close-on-exec flag is set by default for
all new file descriptors.

This means file descriptors doesn't inherit to
spawned process unless

explicitly requested such as system(..., fd=>fd).

* Kernel#respond_to? against a protected method
now returns false

unless the second argument is true.

* Dir.mktmpdir in lib/tmpdir.rb

See above.

* OpenStructnew methods can conflict with
custom attributes named

"each_pair", "eql?", "hash" or "to_h".

* Thread#join, Thread#value

See above.

* Mutex#lock, Mutex#unlock, Mutex#try_lock,
Mutex#synchronizeand Mutex#sleep

See above.

NEWS file of Ruby 2.0
Many new features!!

13

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 14

άwǳōȅ ƛǎ ŀƭƳƻǎǘ ƳŀǘǳǊŜŘ ŀǎ ŀ
ǇǊƻƎǊŀƳƳƛƴƎ ƭŀƴƎǳŀƎŜ ǿƛǘƘ нΦл έ
http://itpro.nikkeibp.co.jp/article/NEWS/20130214/456322/

Ruby 2.1 release announcement

άLΨƳ planning to call for feature proposals soon like
2.0.0 [ruby-core:45474], so if you have a suggestion
you should begin preparing the proposalΦέ

ά Ruby 2.1.0 2013 12 25
2.0.0

έ

- [ruby-core:54726] Announce take over the release
manager of Ruby 2.1.0

by NARUSE, Yui
RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 15

Ruby 2.1 schedule

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 16

2013/02
Ruby 2.0.0

2013/12
Ruby 2.1.0

RubyKaigi2013
5/30, 31, 6/1

RubyConf2013
11/8-10

Euruko2013
6/28, 29

Events are important for
EDD(Event Driven Development) Developers

Ruby 2.1

ÅNew features

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 17

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 18

-*- rdoc -*-

= NEWS for Ruby 2.1.0

This document is a list of user visible feature changes made between
releases except for bug fixes.

Note that each entry is kept so brief that no reason behind or
reference information is supplied with. For a full list of changes
with all sufficient information, see the ChangeLog file.

== Changes since the 2.0.0 release

=== Language changes
=== Core classes updates (outstanding ones only)

* GC
* added environment variable:
* RUBY_HEAP_SLOTS_GROWTH_FACTOR: growth rate of the heap.

* IO
* extended methods:
* IO#seek accepts symbols (:CUR, :END, :SET) for 2nd argument.

* Kernel
* New methods:
* Kernel#singleton_method

* Mutex
* misc
* Mutex#owned? is no longer experimental.

* String
* New methods:
* String#scrub and String#scrub! verify and fix invalid byte sequence.

* extended methods:
* If invalid: :replace is specified for String#encode, replace
invalid byte sequence even if the destination encoding equals to
the source encoding.

* pack/unpack (Array/String)
* Q! and q! directives for long long type if platform has the type.

=== Core classes compatibility issues (excluding feature bug fixes)

* IO
* incompatible changes:
* open ignore internal encoding if external encoding is ASCII-8BIT.

* Module#ancestors

The ancestors of a singleton class now include singleton classes,
in particular itself.

=== Stdlib updates (outstanding ones only)

* Digest
* extended methods:
* Digest::Class.file takes optional arguments for its constructor

* Matrix
* Added Vector#cross_product.

* Net::SMTP
* Added Net::SMTP#rset to implement the RSET command

* Pathname
* New methods:
* Pathname#write
* Pathname#binwrite

* OpenSSL::BN
* extended methods:
* OpenSSL::BN.new allows Fixnum/Bignum argument.

* open-uri
* Support multiple fields with same field name (like Set-Cookie).

* Resolv
* New methods:
* Resolv::DNS.fetch_resource

* One-shot multicast DNS support
* Support LOC resources

* Rinda::RingServer, Rinda::RingFinger
* Rinda now supports multicast sockets. See Rinda::RingServer and
Rinda::RingFinger for details.

* Socket
* New methods:
* Socket.getifaddrs

* StringScanner
* extended methods:
* StringScanner#[] supports named captures.

* Tempfile
* New methods:
* Tempfile.create

=== Stdlib compatibility issues (excluding feature bug fixes)

* URI
* incompatible changes:
* URI.decode_www_form follows current WHATWG URL Standard.
It gets encoding argument to specify the character encoding.
It now allows loose percent encoded strings, but denies ;-separator.

* URI.encode_www_form follows current WHATWG URL Standard.
It gets encoding argument to convert before percent encode.
UTF-16 strings aren't converted to UTF-8 before percent encode by default.

=== C API updates

See NEWS file
Now, much smaller than Ruby 2.0

ά/ƘŀǊŀŎǘŜǊ ǎŜǘ ŀƴŘ /9{ ǿƘƛŎƘ ŀǇǇƭƛŎŀǘƛƻƴ ǎƘƻǳƭŘ ǎǳǇǇƻǊǘ ƛǎ
different by users. However, it is not high priority to support
one application supports multi-/9{Φέ

- Implementation of Practical Multilingual Text Manipulation for Ruby (academic paper)

by Yukihiro Matsumoto

(translated by Koichi Sasada)

ά CES
1 CES

έ

- Ruby

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 19

Quoted “2.1”

Ruby 2.1 features

ÅRefine m17n introduced from Ruby 1.9
ÅString#scrub, String#scrub!
ÅVerify and fix invalid byte sequence.

ÅMore efforts? I heard Matzhas some ideas.

ÅRefine features introduced from Ruby 2.0
ÅKeyword arguments
ÅRefinements
ÅModule#prepend

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 20

21

Quote about 2.0 from Heroku blog

22

Of course, Ruby 2.0.0 is ready on Heroku!

23

Me!

24

Mention about “Speed”
Ruby 2.0 has a faster garbage collectorand is Copy on
Write friendly. Copy on Write or COW is an optimization
that can reduce the memory footprint of a Ruby process
when it is copied. Instead of allocating duplicate
memory when a process is forked, COW allows multiple
processes to share the same memory until one of the
processes needs to modify a piece of information.
Depending on the program, this optimization can
dramatically reduce the amount of memory used to run
multiple processes. Most Ruby programs are memory
bound, so reducing your memory footprint with Ruby
2.0 may allow you to run more processes in fewer dynos.
If ȅƻǳΩǊŜ ƴƻǘ ŀƭǊŜŀŘȅ ǊǳƴƴƛƴƎ ŀ ŎƻƴŎǳǊǊŜƴǘ ōŀŎƪŜƴŘ
consider trying the Unicorn web server.

25

Short summary: GC uses bitmap
marking and CoWfriendly

{ƘƻǊǘ ǎǳƳƳŀǊȅΥ [ŜǘΩǎ ǘǊȅ ¦ƴƛŎƻǊƴΗ

http://en.wikipedia.org/wiki/Copy-on-write
https://blog.heroku.com/archives/2013/2/27/unicorn_rails

26

˨

Only mention about GC!!??
όL ŘƻƴΩǘ ǿƻǊƪ ƻƴ D/ύ

27

+. (*>ҵ<*) .+

[ŜǘΩǎ ŎƻƴǎƛŘŜǊ ŀōƻǳǘ
GC/memory management!

Ruby 2.1 internal features

ÅInternal hooks for memory management

ÅRGenGC: Restricted generational garbage
collection

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 28

¢ƻŘŀȅΩǎ ǘƻǇƛŎ

Internal hooks for memory management
What’s nice?

ÅYou can collect more detailed analysis

ÅExamples
ÅCollect object allocation site information
ÅCollect usage of allocated objects
ÅMeasure GC performance from outside

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 29

Internal hooks for memory management

ÅAdded events
ÅRUBY_INTERNAL_EVENT_NEWOBJ
ÅWhen object is created

ÅRUBY_INTERNAL_EVENT_FREEOBJ
ÅWhen object is freed

ÅRUBY_INTERNAL_EVENT_GC_START
ÅWhen GC is started

ÅRUBY_INTERNAL_EVENT_GC_END
ÅWhen GC is finished

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 30

Ruby

Mark
Sweep

Stop the
(Ruby)
World

Sweep Sweep Sweep Sweep

GC
Start

GC
End

Internal hooks for memory management
Caution

ÅYou can *NOT* trace these events using
TracePoint(introduced from 2.0)

ÅYou need to write C-ext to use them, because
events are invoked during GC, etc

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 31

Internal hooks for memory management
Sample features

ÅObjectSpace. trace_object_allocations
ÅTrace object allocation and record allocation-site
ÅRecord filename, line number, creator ƳŜǘƘƻŘΩǎ ƛŘ ŀƴŘ Ŏƭŀǎǎ

ÅUsage:
ObjectSpace.trace_object_allocations{ # record only in the block

o = Object.new

file = ObjectSpace.allocation_sourcefile(o) #=> __FILE__

line = ObjectSpace.allocation_sourceline(o) #=> __LINE__ -2

}

ÅDemonstration

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 32

Internal hooks for memory management
Postponed job

ÅYou may want to write hooks in Ruby

Ҧ ¦ǎŜ ΨtƻǎǘǇƻƴŜŘ ƧƻōΩ
ÅΨtƻǎǘǇƻƴŜŘ ƧƻōǎΩ Ǌǳƴ ŀǘ ǎŀƳŜ ǘƛƳƛƴƎ ŀǎ finalizers
ÅUsage: rb_postponed_job_register(func, data)
Å̀funcόŘŀǘŀύΩ ǿƛƭƭ ōŜ ŎŀƭƭŜŘ ŀǘ ŀ ǎŀŦŜ-point

Å{ŜŜ ŀƴ ǎŀƳǇƭŜ ŎƻŘŜ ƛƴ άext/objspace/gc_hooks.cέ
ÅObjectSpace.after_gc_(start|end) = proc{GC.start}
ÅProcis called after GC

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 33

άнΦм Structure of VALUE and objects

In ruby, the contents of an object is expressed by a C structure,
always handled via a pointer. A different kind of structure is used for
each class, but the pointer type will always be ±![¦9Φέ

- Ruby Hacking Guide

by MineroAoki

ά2.1 VALUE

ruby

VALUE ά

- Ruby

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 34

Quoted “2.1”

RGenGC: Summary

ÅRGenGC: Restricted Generational GC
ÅNew GC algorithm allows ƳƛȄƛƴƎ ά²ǊƛǘŜ-barrier
ǇǊƻǘŜŎǘŜŘ ƻōƧŜŎǘǎέ ŀƴŘ ά². ǳƴǇǊƻǘŜŎǘŜŘ ƻōƧŜŎǘǎέ
ÅNo (mostly) compatibility issuewith C-exts

ÅInserting WBs gradually
ÅWe can concentrate WB insertion efforts for major
objects and major methods
ÅNow, Array, String, Hash, Object, Numeric objects
are WB protected
ÅArray, Hash, Object, String objects are very popular in Ruby

ÅArray objects usingRARRAY_PTR() change to WB unprotected
objects (called as Shady objects), so existing codes still works.

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 35

RGenGC: Agenda

ÅBackground
ÅGenerational GC
ÅwǳōȅΩǎ D/ ǎǘǊŀǘŜƎȅ

ÅProposal: RGenGC
ÅSeparating into sunny and shady objects
ÅShady objects at marking
ÅShade operation

ÅImplementation

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 36

RGenGC: Background
Current CRuby’sGC
ÅMark & Sweep
ÅConservative
ÅLazy sweep
ÅBitmap marking
ÅNon-recursive marking

ÅC-friendly strategy
Å5ƻƴΩǘ ƴŜŜŘ ƳŀƎƛŎŀƭ ƳŀŎǊƻǎ ƛƴ / ǎƻǳǊŎŜ ŎƻŘŜǎ
ÅMany manyC-extensions under this strategy

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 37

Quoted “2.1”

άнΦм !ōƻǳǘ Mark&SweepGC
Mark&SweepD/ Ŏƻƴǎƛǎǘǎ ƻŦ ƳŀǊƪ ŀƴŘ ǎǿŜŜǇ ǇƘŀǎŜΦέ

- Garbage Collection-Algorithms and Implementations
By NarihiroNakamura, HikaruAikawa

(translated by Koichi Sasada)

άнΦм
GC

έ
-

By

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 38

RGenGC: Background
Mark & Sweep

1. Mark reachable
objects from root
objects

2. Sweep unmarked
objects (collection
and de-allocation)

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada

Root objects

marked

marked marked

free

markedmarked

traverse

traverse traverse

traverse traverse

free

free

Collect
unreachable

objects

39

RGenGC: Background
Generational GC (GenGC)
ÅWeak generational hypothesis: Most objects die
young Ҧ Concentrating reclamation effort on the
youngest objects

ÅSeparate young generation and old generation
ÅCreate objects as young generation
ÅPromote to old generation after surviving nth GC
ÅIn CRuby, n == 1 (after 1 GC, objects become old)

ÅUsually, GC on young space (minor GC)

ÅGC on both spaces if no memory (major/full GC)

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 40

RGenGC: Background
Generational GC (GenGC)

ÅMinor GC and Major GC can use different GC
algorithm
ÅPopular combination
Ҧ Minor GC: Copy GC, Major GC: M&S
ÅOn the /wǳōȅΩǎ: both Minor&Major GCs should
be M&Sbecause /wǳōȅΩǎGC (and existing codes)
based on conservative M&S algorithm

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 41

RGenGC: Background: GenGC
[Minor M&S GC]

ÅMark reachable objects
from root objects.
ÅMark and promote to old
gen
ÅStop traversing after old
objects

Ҧ Reduce mark overhead
ÅSweep not (marked or
old) objects

Å/ŀƴΩǘ ŎƻƭƭŜŎǘ {ƻƳŜ
unreachable objects
Å

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada

Root objects

new

new new

new/
free

newnew

traverse

traverse traverse

traverse traverse

new/
free

old/
free

5ƻƴΩǘ ŎƻƭƭŜŎǘ ƻƭŘ ƻōƧŜŎǘ
even if it is unreachable.

collect

1st MinorGC

42

RGenGC: Background: GenGC
[Minor M&S GC]

ÅMark reachable objects
from root objects.
ÅMark and promote to old
gen
ÅStop traversing after old
objects

Ҧ Reduce mark overhead
ÅSweep not (marked or
old) objects

Å/ŀƴΩǘ ŎƻƭƭŜŎǘ {ƻƳŜ
unreachable objects
Å

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada

Root objects

old

old old

new/
free

oldold

traverse

ignore ignore

ignore ignore

new/
free

old/
free

5ƻƴΩǘ ŎƻƭƭŜŎǘ ƻƭŘ ƻōƧŜŎǘ
even if it is unreachable.

collect

2nd MinorGC

43

RGenGC: Background: GenGC
[Major M&S GC]

ÅNormal M&S

ÅMark reachable objects from
root objects
ÅMark and promote to old gen

ÅSweep unmarked objects

ÅSweep all unreachable
(unused) objects

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada

Root objects

new

old new

new/
free

oldold

traverse

traverse traverse

traverse traverse

new/
free

old/
free

collect

collect

44

Quoted “2.1”

άнΦм ¢ƘŜ ƳŀǊƪ-sweep algorithm

From the viewpoint of the garbage collector,
mutator threads perform just three operations
of interest, New, Read and Write, which each
collection algorithm must redefine
appropriatelyΦέ

- The Garbage Collection Handbook

by Richard Jones, Antony Hosking, Eliot Moss

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 45

RGenGC: Background: GenGC
WB & Remember Set (RSet)

ÅOld objects refer young
objects

Ҧ Minor GC causes

marking leak!!
ÅBecause minor GC ignores
referenced objects by old
objects

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada

old

oldold

new

/ŀƴΩǘ ƳŀǊƪ ƴŜǿ ƻōƧŜŎǘΗ
ҦSweeping living object! (BUG)

46

RGenGC: Background: GenGC
WB & Remember Set (RSet)

ÅAdd an old object into
Remember set (RSet) if an
old object refer new
objects
ÅAt minor GC, mark all
remembered objects

ÅTo detect [oldҦnew] type
references, insert ά²ǊƛǘŜ-
ōŀǊǊƛŜǊέ
ÅάDŜƴŜǊŀǘƛƴƎ ǊŜŦŜǊŜƴŎŜǎέ ҐҐ
ά²ǊƛǘŜέ

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada

old

oldold

new

Remember
set (RSet)

47

new new

RGenGC: Background: GenGC
[Minor M&S GC] w/ RSet

ÅMark reachable
objects from root
objects
ÅRemembered objects
are also root objects

ÅStop traversing after old
objects

ÅSweep not (marked or
old) objects

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada

Root objects

new

old

new

oldold

traverse

traverse

traverse

ignore ignore

old

Remember
set (RSet)

collect

new/
free

new/
free

48

RGenGC: Problem
Write-barrier(WB) andCRuby
ÅTo introduce generational garbage collector, WBs
are necessary to detect [oldҦnew] type reference
ÅWrite-barrier (WB) example in Ruby world
Å(Ruby) old0[0] = new0 # [old0 Ҧ new0]
Å(Ruby) old1.foo = new0 # [old1 Ҧ new1]

ÅWrite-barriers miss causes terrible failure
ÅWB miss
Ҧ Remember-set registration miss
Ҧ (minor GC) marking-miss Ҧ Terrible GC BUG!!

ÅAll of C-extensions need perfect Write-barriers
ÅManipulate Ruby objects in C language (in C-ext)
ÅC-level WBs are needed

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 49

RGenGC: Problem
Inserting WBs into C-extensions (C-ext)
ÅProblem: Compatibility
ÅExample (C)RARRAY_PTR(old0)[0] = new1
ÅThere are Many Many C-extsΩ ǎƻǳǊŎŜǎ ƭƛƪŜ ǘƘŀǘ

ÅCRuby core code uses C-APIs, but we can rewrite
all of source code (with terrible debugging!!)

Å²Ŝ ŎŀƴΩǘ ǊŜǿǊƛǘŜ ŀƭƭ ƻŦ /-extswhich are written
by 3rd party

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 50

RGenGC: Problem
Inserting WBs into C-extensions (C-ext)

ά¢ǿƻ ƻǇǘƛƻƴǎέ

[Give up on GenGC]

or

[GenGCwith re-writing all of C-
extensions without C-extscompatibility]

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada

Current
Choice

51

RGenGC:
Related work on Ruby’s GenGC
ÅKiyama, et. al. GenGC for CRuby
ÅStraightforward implementation for Ruby 1.6
ÅNeed WBs in correct places
ÅHigh development cost
Å/ŀƴΩǘ ƪŜŜǇ compatibility Ҧ Drop all C-exts

ÅNari, et.al longlifeGC for CRuby
ÅIntroduce GenGConly for Node object
ÅNo compatibility issues because C-extsŘƻƴΩǘ ǳǎŜ
node
Åbƻǿ /wǳōȅ ŘƻŜǎƴΩǘ ǳǎŜ Ƴŀƴȅ ƴǳƳōŜǊ ƻŦ ƴƻŘŜ
objects
ÅHigh development cost (to guarantee WBs)

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 52

RGenGC:
Related work on Ruby’s GenGC

ÅMake interpreter with other language
infrastructures which have GC
ÅJRuby, IronRuby
Å/ŀƴΩǘ ƪŜŜǇ ŎƻƳǇŀǘƛōƛƭƛǘȅ ǿƛǘƘ ŎǳǊǊŜƴǘ /-exts

ÅSeparate core heap and CRuby C-ext heap
ÅHigh development cost

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 53

RGenGC: Challenge

ÅHow to insert Write-barriers?
ÅIn Ruby-core, we can chnagew/ huge effort
ÅIƻǿŜǾŜǊΣ ǿŜ ŎŀƴΩǘ ǘƻǳŎƘ ŜȄƛǎǘƛƴƎ /-extsҥ Problem

ÅSeveral approaches
ÅSeparate heaps into the WB world and non-WB
world
ÅNeed to re-write whole of Ruby interpreter

ÅNeed huge development effort

ÅWB auto-insertion
ÅModify C-compiler

ÅNeed huge development effort

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 54

RGenGC:
Challenge to introduce GenGC

ÅCreate GC algorithm permits WB protected
objects AND WB un-protected object in the
same heap

RGenGC: Restricted Generational
Garbage Collection

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 55

RGenGC: Goal
Inserting WBs into C-extensions (C-ext)

άн Ҧ 3 ƻǇǘƛƻƴǎέ

[Give up on GenGC]
or

[GenGC with re-writing all of C-
extensions without C-extscompatibility]

or
[Use RGenGC]

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada

New
choice!!

56

RGenGC:
Key idea

ÅIntroduce Shady object
ÅLƴ ǘƘƛǎ ŎƻƴǘŜȄǘΣ ά{ƘŀŘȅέ ƳŜŀƴǎ ǉǳŜǎǘƛƻƴŀōƭŜΣ
doubtful, etc
ÅSomething feeling dark
Å , in Japanese

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 57

Google image search: “”

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 58

RGenGC:
Key Idea
ÅSeparate objects into two types
ÅShadyObject: WB Unprotected
ÅSunnyObject: WB Protected

ÅDecide this type at creation time
Å! Ŏƭŀǎǎ ŘƻƴΩǘ ŎŀǊŜ ŀōƻǳǘ ².Ҧ Shadyobj
ÅA class care about WB Ҧ Sunny obj
ÅCurrently, most of classes 5hbΩǘcare about WB,
so most of objects are created as Shady objects.

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada

Shady: doubtful,
questionable, ...

59

An antonym of
ǘƘŜ ǿƻǊŘ ά{ƘŀŘȅέ

Shady
˖`

Sunny
o

RGenGC:
Key Idea

ÅSunny objects can change
to Shady objects
Åά{ƘŀŘŜέ ƻǇŜǊŀǘƛƻƴ
ÅLƴ ǘƘŜ / ǇǊƻƎǊŀƳ ŘƻŜǎƴΩǘ
care about RGenGC
ÅExample
Åptr = RARRAY_PTR(ary)

ÅLƴ ǘƘƛǎ ŎŀǎŜΣ ǿŜ ŎŀƴΩǘ ƛƴǎŜǊǘ ². ŦƻǊ
ptr ƻǇŜǊŀǘƛƻƴΣ ǎƻ ±a ǎƘŀŘŜ άaryέ

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 60

Sunny
obj

Shady
obj

VM

Shade

Create

Shady object ŎŀƴΩǘ
change into sunny object

RGenGC
Key Idea: Rule

ÅaŀǊƪ ά{ƘŀŘȅ ƻōƧŜŎǘǎέ ŎƻǊǊŜŎǘƭȅ
ÅAt Marking
1. 5ƻƴΩǘ ǇǊƻƳƻǘŜ ǎƘŀŘȅ ƻōƧŜŎǘǎ ǘƻ ƻƭŘ ƻōƧŜŎǘǎ
2. Remember shady objects pointed from old

objects
ÅAt Shade operation for old sunny objects
1. Demote objects
2. Remember shaded shady objects

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 61

RGenGC
[Minor M&S GC w/Shady object]

ÅMark reachable objects
from root objects
ÅMark shady objects, and
ϝŘƻƴΩǘ ǇǊƻƳƻǘŜϝto old
gen objects
ÅIf shady objects pointed
from old objects, then
remember shady objects
by RSet.
Ҧ Mark shady objects

every minor GC!!

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada

Root objects

new

new

old

new
new

traverse

traverse

traverse traverse

old

Remember
set (RSet)

collect

new/
free

new/
free

traverse

new

traverse

new

traverse

1st MinorGC

mark and
remember

remember

62

RGenGC
[Minor M&S GC w/Shady object]

ÅMark reachable objects
from root objects
ÅMark shady objects, and
ϝŘƻƴΩǘ ǇǊƻƳƻǘŜϝto old
gen objects
ÅIf shady objects pointed
from old objects, then
remember shady objects
by RSet.
Ҧ Mark shady objects

every minor GC!!

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada

Root objects

old

old

old

new
old

traverse

ignore

ignore
ignore

old

Remember
set (RSet)

collect

new/
free

new/
free

traverse

new

traverse

new

traverse

traverse

2nd MinorGC

63

RGenGC
[Shade operation]

ÅOld sunny objects Ҧ Shade
objects
ÅExample: RARRAY_PTR(ary)
Å(1) Demote object (old Ҧ new)
Å(2) Register it to Remember Set

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada

old

Shadyold

new

Remember
set (RSet)

64

RGenGC
Timing chart

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada

Ruby Mark Sweep

Stop the (Ruby)
World

Sweep Sweep Sweep Sweep

2.0.0 GC (M&S w/lazy sweep)

w/RGenGC (Minor GC)

Ruby
Mark

Sweep

Stop the
(Ruby)
World

Sweep Sweep Sweep Sweep

ÅShorter mark time (good)
ÅSame sweep time (not good)
Å(little) Longer execution time b/c WB (bad)

65

RGenGC
Number of marking objects

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada

2.0.0 GC (M&S w/lazy sweep)

Living object counts Freed object counts

w/RGenGC (Minor GC)

Living object counts Freed object counts

of old
object
(#old)

of new
object (#new)

of freed
but remembered

objects

(a) (b)

(a) # of old objects by WB
(b) # of shady objects pointed by old
(c) # of old but shady objects

(c)

66

RGenGC
Number of marking objects

Marking space Number of unused,
uncollected objs

Sweeping
space

Traditional GenGC #new + (a) (a) #new

RGenGC #new + (a) + (b) + (c) (a) + (b) Full heap

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada

w/RGenGC (Minor GC)

Living object counts Freed object counts

of old
object
(#old)

of new
object (#new)

of freed
but remembered

objects

(a) (b)

(c) (a) # of old objects by WB
(b) # of shady objects pointed by old
(c) # of old but shady objects

67

RGenGC
Discussion: Pros. and Cons.

ÅPros.
ÅAllow WB unprotected objects (shady objects)
Å100% compatiblew/ existing extensions (and standard classes/methods)

ÅInserting WBs step by step, and increase
performance gradually
Å²Ŝ ŘƻƴΩǘ ƴŜŜŘ ǘƻ ƛƴǎŜǊǘ ŀƭƭ ².ǎ ƛƴǘƻ ƛƴǘŜǊǇǊŜǘŜǊ ŎƻǊŜ ŀǘ ŀ ǘƛƳŜ

ÅWe can concentrate into popular (frequent) classes/methods.

ÅWe can ignore minor classes/methods.

ÅSimple algorithm, easy to develop (done!)

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 68

RGenGC
Discussion: Pros. and Cons.

ÅCons.
ÅLƴŎǊŜŀǎƛƴƎ άǳƴǳǎŜŘΣ ōǳǘ ƴƻǘ ŎƻǊǊŜŎǘŜŘ ƻōƧŜŎǘǎ
until full/major GC
ÅRemembered objects (caused by well known GenGC algorithm)
ÅRemembered shady objects (caused by RGenGC algorithm)

ÅWB insertion (potential) bugs
ÅRGenGC permit shady objects, but sunny objects need

correct/perfect WBs. But inserting correct/perfect WBs is difficult.
ÅThis issue is out of scope. We have another idea against this

problem (out of scope).

Å/ŀƴΩǘ ǊŜŘǳŎŜ {ǿŜŜǇƛƴƎ ǘƛƳŜ
ÅBut many (and easy) well-known techniques to reduce sweeping

time (out of scope).

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 69

Quoted “2.1”

άнΦм /ƘŀǊŀŎǘŜǊ ǎŜǘ
Χέ

-C Reference manual
By Samuel P. HarbisonIII, Guy L.SteeleJr.

άнΦм
C

έ
-C

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 70

RGenGC
Implementation
ÅIntroduce two flags into RBasic
ÅFL_KEEP_WB: WB protected or not protected
Å0 Ҧ unprotected ҦShady object
Å1 Ҧ protected ҦSunny object
ÅUsage: NEWOBJ_OF(ary, struct RArray, klass, T_ARRAY | FL_KEEP_WB);

ÅFL_OLDGEN: Young gen or Old gen?
Å0 Ҧ Young gen
Å1 Ҧ Old gen
Å5ƻƴΩǘ ƴŜŜŘ ǘƻ ǘƻǳŎƘ ōȅ ǳǎŜǊ ǇǊƻƎǊŀƳ

ÅRemember set is represented by bitmaps
ÅSame as marking bitmap
Åheap_slot::rememberset_bits
ÅTraverse all object area with this bitmap at first

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 71

RGenGC
Implementation: WB operation API

ÅOBJ_WRITE(a, &a->x, b)
Å5ŜŎƭŀǊŜ ΨŀΩ ŀƎƎǊŜƎŀǘŜǎ ΨōΩ
ÅWrite: *&a->x = b
ÅWrite barrier
Åh.Wψ²wL¢9όŀΣ ōύ ǊŜǘǳǊƴǎ άŀέ

ÅOBJ_WRITTEN(a, oldv, b)
Å5ŜŎƭŀǊŜ ΨŀΩ ŀƎƎǊŜƎŀǘŜǎ ΨōΩ ŀƴŘ ƻƭŘ ǾŀƭǳŜ ƛǎ ΨoldvΩ
ÅNon-write operation
ÅWrite barrier

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 72

ΨŀΩ

Ψϧŀ-ҔȄΩ

oldv

b

RGenGC
Implementation: WB operation API
ÅT_ARRAY
ÅRARRAY_PTR(ary) causes shade operation
Å/ŀƴΩǘ ƎŜǘ wDŜƴD/ ǇŜǊŦƻǊƳŀƴŎŜ ƛƳǇǊƻǾŜƳŜƴǘ
ÅBut works well J

ÅInstead of RARRAY_PTR(ary), use alternatives
ÅRARRAY_AREF(ary, n)ҦRARRAY_PTR(ary)[n]
ÅRARRAY_ASET(ary, n, obj)ҦRARRAY_PTR(ary)[n] =
obj w/ Write-barrier
ÅRARRAY_PTR_USE(ary, ptrname, {...block...})
ÅOnly in block, pointers can be accessed by `ptrnameΩ ǾŀǊƛŀōƭŜ

(VALUE*).
ÅProgrammers need to insert collect WBs (misscauses BUG).

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 73

RGenGC
Incompatibility

ÅMake RBasic::klassάconstέ
ÅNeed WBs for a reference from an object to a
klass.
ÅOnly few cases (zero-clear and restore it)
ÅProvide alternative APIs
ÅNow, RBASIC_SET_CLASS(obj, klass) and

RBASIC_CLEAR_CLASS(obj) is added. But they should be internal
APIs (removed soon).

Årb_obj_hide() and rb_obj_reveal() is provided.

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 74

RGenGC
Implementation

ÅRGENGC_CHECK_MODE in gc.c
Å1: Enable assertions
ÅнΥ 9ƴŀōƭŜ ά². ŎƘŜŎƪƛƴƎέ ƳƻŘŜ

ÅWB checking mode
Å(1) do minor GC
Å(2) do major/full GC
Å(3) compare result with (1) and (2)
ÅIf living objects in (2) but not living in (1) it should be BUG!!

ÅNot a perfect (implementation limitation), but a
good method to detect bugs

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 75

RGenGC
Implementation

ÅMacros in ruby/ruby.h
ÅUSE_RGENGC
ÅYou can enable/disable RGenGC with this macro.

ÅRGENGC_WB_PROTECTED_???
ÅRGENGC_WB_PROTECTED_ARRAY, RGENGC_WB_PROTECTED_HASH,

RGENGC_WB_PROTECTED_STRING, RGENGC_WB_PROTECTED_OBJECT,
RGENGC_WB_PROTECTED_FLOAT, RGENGC_WB_PROTECTED_COMPLEX,
RGENGC_WB_PROTECTED_RATIONAL, RGENGC_WB_PROTECTED_BIGNUM

ÅNow, only supports above types (T_???).
ÅT_CLASS, T_MODULE and T_DATA is needed to support with high priority.

ÅYou can enable/disable RGenGC for each types.

ÅIf you have trouble with RGenGC, try to disable them.

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 76

RGenGC
Performance evaluation

ÅIdeal micro-benchmark for RGenGC
ÅCreate many old objects at first
ÅMany new objects (many minor GC, no major GC)

ÅRDoc
ÅSame RDoc generation as wǳōȅΩǎ ǘǊǳƴƪ

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 77

RGenGC
Performance evaluation (micro)

0

100000000

200000000

300000000

400000000

500000000

600000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

E
xe

c
u

ti
o

n
 t
im

e
 b

y
R

D
T

S
C

GC count

mark (RGENGC)

sweep (RGENGC)

mark

sweep

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada

ÅShorter mark time (good)
ÅSame sweep time (not good)

78

Same sweep
time L

Good mark
time J

RGenGC
Performance evaluation (RDoc)

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 79

0

50

100

150

200

250

300

350

400

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1
3

1
2
7

1
4
1

1
5
5

1
6
9

1
8
3

1
9
7

2
1
1

2
2
5

2
3
9

2
5
3

2
6
7

2
8
1

2
9
5

3
0
9

3
2
3

3
3
7

3
5
1

m
s

Mark Time(ms)

Sweep Time(ms)

RGenGC/Mark Time(ms)

RGenGC/Sweep Time(ms)

Total GC count
is different

Several major/full
GC peaks

Faster minor
GC

RGenGC
Performance evaluation (RDoc)

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 80

0

10000

20000

30000

40000

50000

60000

Normal RGenGC

m
s Total mark

Total sweep

RGenGC
Performance evaluation (RDoc)

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 81

175

180

185

190

195

200

205

210

215

220

225

Normal RGenGC

s
e

c

Execution time

Impressive!!

Of course, this is άDǊŀǇƘ ƳŀƎƛŎέΦ
If a students submits this graph,
his score is fail.

RGenGC
Performance evaluation (RDoc)

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 82

0

50

100

150

200

250

Normal RGenGC

Execution time

About 15% speedup!

RGenGC: Summary

ÅRGenGC: Restricted Generational GC
ÅbŜǿ D/ ŀƭƎƻǊƛǘƘƳ ŀƭƭƻǿ ƳƛȄƛƴƎ ά²ǊƛǘŜ-barrier
ǇǊƻǘŜŎǘŜŘ ƻōƧŜŎǘǎέ ŀƴŘ ά². ǳƴǇǊƻǘŜŎǘŜŘ ƻōƧŜŎǘǎέ
ÅNo (mostly) compatibility issuewith C-exts

ÅInserting WBs gradually
ÅWe can concentrate WB insertion efforts for major
objects and major methods
ÅNow, Array andStringobjects are WB protected
ÅArray and String objects are very popular in Ruby

ÅArray objects usingRARRAY_PTR() change to WB unprotected
objects (called as Shady objects), so existing codes work well

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 83

RGenGC
Future work
ÅMinor GC / Major GC timing
ÅToo many major GC Ҧ slow down
ÅToo few major GC Ҧ memory consumption issue, etc

ÅMake more sunny objects (especially T_CLASS)
ÅOptimize remember set representation
ÅInserting WBs w/ application profiling
ÅProfiling system
ÅBenchmark programs

ÅDetection system for WBs insertion miss
ÅRGENGC_CHECK_MODE (2, in gc.c) is not enough

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 84

RGenGC
Issues: Terminology
ÅaŀǘȊ ǊŜƧŜŎǘŜŘ ǘƘŜ ǿƻǊŘ ά{ǳƴƴȅέ

Åά{ƘŀŘȅέ Ƙŀǎ ŀ ƳŜŀƴƛƴƎ ƻŦ άǉǳŜǎǘƛƻƴŀōƭŜΣ
ŘƻǳōǘŦǳƭΣ ΧέΣ ōǳǘ ά{ǳƴƴȅέ Ƙŀǎ ƴƻ ƳŜŀƴƛƴƎ ƻŦ
ŀƎŀƛƴǎǘ άǉǳŜǎǘƛƻƴŀōƭŜΣ ŘƻǳōǘŦǳƭΣ etcέΦ

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 85

Shady
˖`

Sunny
o

Doubtful,
questionable, etc

???

RGenGC
Issues: Terminology

Å¢Ƙƛǎ ƛǎ ŀ ƭŀǎǘ ǇǊŜǎŜƴǘŀǘƛƻƴ ǘƻ ǳǎŜ ά{ƘŀŘȅέ ŀƴŘ
ά{ǳƴƴȅέ
ÅWe will replace codes and documents with:
Åά{ƘŀŘȅέ Ҧά². ǳƴǇǊƻǘŜŎǘŜŘέ
Åά{ǳƴƴȅέ Ҧ ά². ǇǊƻǘŜŎǘŜŘέ
ÅOr
Åά{ƘŀŘȅέ Ҧ ά{ƘŀŘȅέ όǊŜƳŀƛƴύ
Åά{ǳƴƴȅέ Ҧ άbƻǊƳŀƭέ όƴƻǘ ǎƘŀŘȅύ

If you have any idea of the words,
please let us know.

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 86

Quoted “2.1”

άнΥм bƻǿ ǿƘŜƴ WŜǎǳǎ ǿŀǎ ōƻǊƴ ƛƴ .ŜǘƘƭŜƘŜƳ ƻŦ
Judaea in the days of Herod the king, behold, there
came wise men from the east to JerusalemΣέ

- Gospel of Matthew

άнΥм

έ

-

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 87

Ruby 2.1 expected “internal” features

ÅSophisticated inline cache invalidation mechanism
ÅMemory efficient string management & Symbol GC
ÅFine-grain memory protection to detect WB
insertion miss
ÅSignal thread
ÅMore efficient inter-process migration technique
ÅJIT compilation for small part of Ruby code
ÅIntroduce fastpathC-methods type
ÅInlinedProc.callinvocation
Å!h¢ /ƻƳǇƛƭŜǊ ŀƴŘ ŜȄǘŜƴŘƛƴƎ άǊŜǉǳƛǊŜέ ōŜƘŀǾƛƻǊ
ÅUseful debugger

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 88

Sophisticated inline cache
invalidation mechanism

ÅFrom Ruby 1.9 (YARV), inline cache technique
is used in several codes
ÅInline method caching ҥ Huge opportunity
ÅConstant lookup
ÅΧ

ÅCache invalidation with only one variable
άglobal_state_versionέ

ÅInvalidate inline cache, other non-related
inline caches are also invalidated

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 89

Sophisticated inline cache
invalidation mechanism

ÅLƴǾŀƭƛŘŀǘŜ ŀƭƭ ŎƭŀǎǎŜǎΩ ƳŜǘƘƻŘ ŎŀŎƘŜ

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 90

Object

X Y Z

X1 X2 Z1 Z2

Redefine X,
invalidate all of

classes

X1a

Sophisticated inline cache
invalidation mechanism

ά¢Ƙƛǎ ǇŀǘŎƘ ŀŘŘǎ Ŏƭŀǎǎ ƘƛŜǊŀǊŎƘȅ ƳŜǘƘƻŘ
caching to CRuby. This is the algorithm used by
JRubyand RubiniusΦέ

[ruby-core:55053] [ruby-trunk - Feature #8426][Open]
Implement class hierarchy method caching

by Charlie Somerville

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 91

Sophisticated inline cache
invalidation mechanism

ÅInvalid only sub-classes under effective class

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 92

Object

X Y Z

X1 X2 Z1 Z2

Redefine X,
invalidate X and
·Ωǎ ǎǳōŎƭŀǎǎŜǎ

X1a

Memory efficient string management

ÅEach string has their string body (space
acquired by malloc())

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 93

ptr

String

ά{ǘǊƛƴƎ ōƻŘȅέ

Memory efficient string management

ÅCƻǊ ǎƻƳŜ ǎǘǊƛƴƎǎ ƘŀǾŜ ǎŀƳŜ άǎǘǊƛƴƎ ōƻŘȅέΣ
they has own string body each other.

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 94

ptr

String

ά{ǘǊƛƴƎ ōƻŘȅέ

ptr

String

ά{ǘǊƛƴƎ ōƻŘȅέ

ptr

String

ά{ǘǊƛƴƎ ōƻŘȅέ

ptr

String

ά{ǘǊƛƴƎ ōƻŘȅέ

ptr

String

ά{ǘǊƛƴƎ ōƻŘȅέ

ptr

String

ά{ǘǊƛƴƎ ōƻŘȅέ

Memory efficient string management

ÅIt can be shared by strings w/ dirty bit.

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 95

ptr

String

ά{ǘǊƛƴƎ ōƻŘȅέ
(shared by 5 places)

ptr

String

ptr

String

ptr

String

ptr

String

Ҧ Reduce memory consumption!!

Ϟ {ƘŀǊƛƴƎ ǎǘǊƛƴƎ ōƻŘȅ ƛǎ ƛƳǇƭŜƳŜƴǘŜŘ ƴƻǿ
if a string object is duped.
This technique is more aggressive approach.

Memory efficient string management

ÅThis mechanism can work with Symbol
management

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 96

ptr

String

ά{ǘǊƛƴƎ ōƻŘȅέ
(shared by 5 places)

ptr

String

ptr

String

ptr

String

ptr

String

Ҧ GC-able Symbol

άнΥм And the heavens and the earth were finished,
and all the host of themΦέ

- Genesis

άнΥм έ

-

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 97

Quoted “2.1”

Agenda

ÅRuby 2.1 Schedule
Åwǳōȅ нΦм ƴŜǿ άƛƴǘŜǊƴŀƭέ ŦŜŀǘǳǊŜǎ
ÅInternal object management hooks
ÅObject allocation tracing
ÅGC hooks

ÅRGenGC: Restricted Generational Garbage
Collectionҥ ¢ƻŘŀȅΩǎ Ƴŀƛƴ ǘƻǇƛŎ

Åwǳōȅ нΦм ŜȄǇŜŎǘŜŘ άƛƴǘŜǊƴŀƭέ ŦŜŀǘǳǊŜǎ
ÅSophisticated inline cache invalidation mechanism
ÅMemory efficient string management
ÅUseful debugger

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 98

Summary

ÅWe are implementing new features and
ƛƳǇǊƻǾƛƴƎ wǳōȅΩǎ ǉǳŀƭƛǘȅ ŦƻǊ wǳōȅ нΦм

Å9ǎǇŜŎƛŀƭƭȅ ƛƴǘǊƻŘǳŎƛƴƎ άDŜƴŜǊŀǘƛƻƴŀƭ garbage
ŎƻƭƭŜŎǘƻǊέ ǿƘƛŎƘ LΩƳ ǿƻǊƪƛƴƎ ƻƴ ǿƛƭƭ ƛƳǇǊƻǾŜ
huge performance

ÅRuby 2.1 is currently scheduled on Dec 25,
2013

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 99

Thank you
Any questions?

Koichi Sasada
Heroku, Inc.

<ko1@heroku.com>

RubyKaigi2013 Toward efficient Ruby 2.1 by Koichi Sasada 100

