
ASTro: An AST-Based Reusable Optimization
Framework

Koichi Sasada
ko1@st.inc
STORES, Inc.
Tokyo, Japan

Abstract
Partial evaluation of abstract syntax tree (AST) traversal
interpreters removes interpretation overhead while maxi-
mizing developer productivity; a language author specifies
only the behavior of each AST node, and the framework spe-
cializes whole programs automatically. Existing solutions,
however, come with heavyweight toolchains and tightly cou-
pled, platform-specific back-ends, making portability and
deployment difficult.
We present ASTro, a lightweight framework that keeps

the node-centric workflow but eliminates heavy dependen-
cies. ASTro translates the partially evaluated interpreter into
well-structured C source code that encourages aggressive
inlining by commodity compilers, yielding competitive na-
tive code. Because the output is plain C, it can be rebuilt
with any mainstream toolchain, reducing deployment effort.
To support just-in-time use, every AST sub-tree receives a
Merkle-tree hash; identical fragments share their compiled
artifacts at astro-scale—across processes, machines, and de-
ployments—so each piece is compiled once and reused many
times.
This paper introduces ASTro, a framework for building

interpreters and partial evaluators, along with its generator
tool, ASTroGen. It shows that language authors can imple-
ment interpreters by specifying only the behavior of AST
nodes. We present empirical measurements on micro bench-
marks that quantify ASTro’s runtime performance.

CCS Concepts: • Software and its engineering→ Inter-
preters.

Keywords: Interpreter, Compiler, Partial evaluator

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
VMIL ’25, Singapore, Singapore
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-2164-9/25/10
https://doi.org/10.1145/3759548.3763371

ACM Reference Format:
Koichi Sasada. 2025. ASTro: An AST-Based Reusable Optimization
Framework. In Proceedings of the 17th ACM SIGPLAN International
Workshop on Virtual Machines and Intermediate Languages (VMIL
’25), October 12–18, 2025, Singapore, Singapore. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3759548.3763371

1 Introduction
The simplest way to implement a language runtime is to
build an abstract syntax tree (AST) from source code and
run a recursive tree-traversal interpreter. However, when
performance becomes a priority, implementers usually intro-
duce additional stages: a byte-code compiler, a virtual ma-
chine (VM), and ultimately a just-in-time (JIT) compiler that
emits native code. While each stage increases speed, it also
multiplies maintenance cost: every new grammar feature
or optimization must propagate through the entire pipeline,
and later stages tightly depend on the exact semantics of
earlier ones.
Partial evaluation and meta-tracing compilation offers

an attractive alternative[8]: given an interpreter and a pro-
gram, specialize the interpreter with respect to that program
and compile the result. Frameworks like RPython[3, 12] and
Truffle/Graal[13–15] demonstrate that this idea can achieve
competitive performance, but they rely on heavyweight,
tightly coupled toolchains that require significant effort to
learn and deploy, for example, when targeting new CPU
architectures or constrained environments.
We introduce ASTro, a lightweight and portable partial

evaluation framework. A Ruby script of roughly 500 lines,
ASTroGen, takes a set of node behaviors and automatically
generates (a) an evaluator of tree-traversal interpreter, (b) a
partial evaluator that generates a specialized evaluator for
the given program, and (c) the required helper routines.
Commodity C compilers then turn specialized code into

highly optimized binaries through aggressive inlining, elimi-
nating the need for custom back ends. To reduce compilation
latency and enable both ahead-of-time and JIT compilation,
we attach Merkle-tree hashes[11] to every AST sub-tree;
identical fragments share their compiled artifacts in an astro-
scale cache that spans processes, machines, and deployments.

The contributions of this work include the following:

https://doi.org/10.1145/3759548.3763371
https://doi.org/10.1145/3759548.3763371

VMIL ’25, October 12–18, 2025, Singapore, Singapore Koichi Sasada

• Amethod that employs partial evaluation to transform
the node behavior into compact C code that commod-
ity compilers inline effortlessly, thus yielding high-
performance native code without any complicated in-
trusion of the node definitions.

• A Merkle-tree hash based scheme for cross-process
sharing of compiled AST sub-trees.

• The implementation and open-source release of ASTro
framework1, a compact tool that automates language
runtime construction.

• An empirical evaluation on micro benchmarks quanti-
fying ASTro’s runtime performance.

2 Background
This section reviews the technical context in which ASTro
is positioned.

2.1 Tree-Traversal Interpreters
The most straightforward runtime organizes execution as a
recursive walk over an abstract syntax tree and executes a
per-node evaluation logic. Although this pattern is easy to
implement and debug, it tends to perform poorly on modern
processors: each step follows pointers to nodes that are scat-
tered in memory, so the traversal touches non-contiguous
locations and defeats data-cache locality.

2.2 Byte-code Virtual Machines and JIT Compilers
To mitigate these costs, many language runtimes lower the
AST into a linear sequence of byte-code instructions exe-
cuted by a hand-written VM. This improves branch predic-
tion and locality, yet introduces new maintenance layers:

• An AST-to-byte-code compiler
• A VM instruction set definition and implementation
• Optionally, a JIT back-end that lowers VM instructions
to machine code

Each layer depends tightly on the previous one, so adding a
grammar feature or changing an opcode semantics requires
cascading modifications. JIT compilers further require IR
optimizers and CPU-specific code generators, increasing the
complexity of maintenance and portability.

2.3 Partial Evaluation
Partial evaluation (PE) specializes a program 𝑝 with respect
to a subset of its input 𝑠 , producing a residual program 𝑝𝑠
that satisfies 𝑝𝑠 (𝑑) = 𝑝 (𝑠, 𝑑), where 𝑑 denotes the remaining
input. When 𝑝 is an interpreter Int for the language 𝐿 and
𝑠 is a program 𝑃𝐿 written in 𝐿, the first Futamura projection
yields a compiled version 𝑃∗

𝐿
:

𝑃∗
𝐿 = PE(Int, 𝑃𝐿).

1https://github.com/ko1/astro

That is, 𝑃∗
𝐿
runs with no further interpretation overhead

yet preserves the semantics of 𝑃𝐿 .

2.4 Existing Frameworks
This section reviews two prominent systems that elevate
meta-compilation techniques such as partial evaluation and
meta-tracing JIT to a first–class optimization strategy, demon-
strating that interpreter-only development can indeed deliver
high performance—but at the cost of significant infrastruc-
ture complexity.

RPython / PyPy. An interpreter written in RPython is
translated via a whole-program type inference and control-
flow analysis that infer low-level types and flow facts. The
resulting low-level IR is processed by a translation pipeline
that performs type specialization, inserts garbage collection
and exception-handling machinery, and finally generates a
large C code base. An external C compiler then links the
runtime, garbage collector, and application into a mono-
lithic executable. At runtime a meta-tracing JIT observes hot
loops, specializes them for the concrete runtime types, and
produces optimized machine code.

Truffle / Graal. An interpreter is expressed as a set of
node executors written in Java with the Truffle DSL. During
program execution in the interpreter, each node profiles the
runtime behavior. Once the system detects a hot path, the
partial evaluator is applied to the AST with the collected
profile data, producing an optimized intermediate represen-
tation. The Graal compiler then compiles this IR into native
code with deoptimization support. This design enables high-
performance native code generation solely from interpreter
definitions.

Common Pattern—and Shared Pain. Both frameworks
uphold the attractive ideal of keeping a single interpreter as
the canonical definition of language semantics while relying
on meta-compilation to erase interpretation overhead.
Yet they share one practical obstacle: heavyweight tool-

chains. Heavyweight toolchains present challenges of poor
deployability, limited extensibility, and difficult debugging.
For example, porting Truffle/Graal beyond JVM environ-
ments or to a new CPU architecture often entails disentan-
gling a highly complex system.

3 ASTro Framework
Existing meta-compilation systems demonstrate that “an in-
terpreter alone can run fast,” yet they remain daunting in
practice: their toolchains are large and difficult to use, so
bringing one into a project—or porting it to a new CPU archi-
tecture—requires deep expertise and substantial engineering
effort.
To address these challenges, ASTro adopts the following

ideas:

ASTro: An AST-Based Reusable Optimization Framework VMIL ’25, October 12–18, 2025, Singapore, Singapore

Baseline interpreter
Source codenode.def

eval.c

dispatch.c

hash.c

node.h

alloc.c

specialize.c

dump.c

ASTroGen

(1) Baseline
interpreter

C compiler

(P) Program in
target language

(2) Specialized
dispatchers for

(P) in C

C compiler
(3) Compiled code

for (P)

Generate

Generate

Gen.

Generate

main, parser, . . .

Load as
JIT stub

Parse

C compiler

(4) Specialized
interpreter or

executable for (P)
Gen.

Figure 1. Workflow with ASTroGen

• Outsource the hard part. The user only needs to
write the behavior of each node in the well-known C
language, while all low-level optimizations and code
generation are delegated to a commodity C compiler
that is widely used, well tested, highly optimizing and
expected to remain well maintained in the future.

• Inline-friendly specialized output. The partial eval-
uator generates small dispatchers that leave the evalu-
ator bodies untouched, making them trivial for com-
modity C compilers to inline and optimize.

• Hash-based reuse. Each sub-tree is named by aMerkle-
tree hash of its structure. Identical hashes imply iden-
tical semantics, which allows any interpreter process
reuse a previously compiled code without repeating
compilation.

This section explains ASTro’s overall design and key ideas
with examples.

3.1 Workflow Overview
As illustrated in Figure 1, ASTro takes a node definition
file (node.def) and generates parts of the interpreter code-
base in C. It produces node.h for AST structure definitions,
eval.c for evaluators, dispatch.c for evaluator dispatchers,
hash.c for Merkle hashing functions, alloc.c for node con-
structors, specialize.c for partial evaluators, and dump.c
for human-readable node printers. Each file contains per-
node functions systematically derived from the node defi-
nitions, ensuring consistency and extensibility across the
interpreter.

The user constructs an AST using their own parser and the
allocators provided in alloc.c, then executes the program

NODE_DEF
node_num(int n) {

return n;
}
NODE_DEF
node_add(NODE *lv, NODE *rv) {

return EVAL_ARG(lv) + EVAL_ARG(rv);
}
NODE_DEF
node_mul(NODE *lv, NODE *rv) {

return EVAL_ARG(lv) * EVAL_ARG(rv);
}

Figure 2. node.def of the toy calc language

by invoking EVAL(c, ast) with a user-defined context c.
This setup yields the baseline interpreter ((1) in Figure 1).

At any point, the interpreter may use the partial evaluator
to emit node-specific dispatchers in C ((2) in fig.). It can
then invoke a C compiler to generate native code on the fly
((3) in fig.) and load it as a JIT stub. Since each generated
symbol is named using a Merkle-tree hash, identical sub-
trees can be reused across processes. The user may also
produce a specialized (pre-trained) interpreter ((4) in fig.)
with specialized dispatchers for a given program 𝑃 , which
can be treated as a standalone executable for 𝑃 .

3.2 Sample Scenario
To demonstrate the workflow and illustrate ASTro’s tech-
niques, we present a toy calc language comprising only num-
bers, +, and *. Its node.def lists three nodes: number literal,

VMIL ’25, October 12–18, 2025, Singapore, Singapore Koichi Sasada

addition, and multiplication, shown in Figure 2. Each node
declares its fields as C-style parameters and specifies its be-
havior in plain C; child node evaluation is expressed via the
macro EVAL_ARG().

ASTroGen generates an evaluator from the node.def file.
A working interpreter can then be constructed by combining
it with a user-supplied, language-specific parser and context
management.

3.3 Declarations
ASTroGen derives the complete NODE structure definitions
directly from node.def; see Listing A for the emitted code.
This eliminates the need to manually define enumerations
or maintain node-kind registries.

3.4 Node Evaluators
In AST traversal interpreters implemented in C, a switch/case
statement typically dispatches on the syntactic tag of each
AST node. ASTro, by contrast, embeds in every node header
a pointer to its own evaluator function that evaluates that par-
ticular node instance—mirroring the role of Truffle’s execute()
method.

Per-node evaluator.With given node.def definition, for
a numeric literal we generate an evaluator EVAL_node_num
that simply returns its embedded value; the first argument
CTX *c is a user-defined runtime context that can hold global
variables, a value stack, or any language-specific state:
static VALUE
EVAL_node_num(CTX *c, NODE *n, int32_t num)
{

return num;
}

Dispatcher. The evaluator is not invoked directly. Instead
each node owns a thin dispatcher, DISPATCH_..., which
extracts the node’s fields and forwards them to the evaluator:
static VALUE DISPATCH_node_num(CTX *c, NODE *n)
{

return EVAL_node_num(c, n, n->u.node_num.num);
}

n->head.dispatcher is the address of the dispatcher for
this node. A general evaluation macro EVAL(c, n) for node
n can be defined with (*n->head.dispatcher)(c, n).

Nodes with children.When a node owns child nodes, its
generated evaluator receives both the child node (NODE *)
and the child’s dispatcher:
static VALUE EVAL_node_add(CTX *c, NODE *n,

NODE *lv, node_dispatcher_func_t lv_disp,
NODE *rv, node_dispatcher_func_t rv_disp)

{
return EVAL_ARG(c, lv) + EVAL_ARG(c, rv);

}

In this case, this function receives not only lv, but also
lv_disp, the dispatcher of the lv.

Here EVAL_ARG(c, n) is a macro that expands to the cor-
responding dispatcher call supplied as an argument2.

The dispatcher for the addition node therefore collects the
two child dispatchers and passes them along:
static VALUE DISPATCH_node_add(CTX *c, NODE *n)
{

return EVAL_node_add(c, n,
n->u.node_add.lv, disp(n->u.node_add.lv),
n->u.node_add.rv, disp(n->u.node_add.rv);

}

Here disp(n) is a macro to get the dispatcher of n.
Separating dispatchers from evaluators is a key design

choice that makes building a partial evaluator remarkably
easy with off-the-shelf C compilers, as we demonstrate in
subsection 3.7.

3.5 Computing Node Hashes
To enable cross-process caching and de-duplication, ASTro
assigns a Merkle tree hash to every AST node—effectively
naming the entire sub-tree rooted at that node. A node’s
hash is obtained by hashing (i) the node’s kind and (ii) each
of its attributes.

// Leaf node (numeric literal)
static node_hash_t HASH_node_num(NODE *n)
{

node_hash_t h = hash_cstr("node_num");
h = hash_merge(h,

hash_uint32((uint32_t)n->u.node_num.num));
return h;

}

// Internal node (addition)
static node_hash_t HASH_node_add(NODE *n)
{

node_hash_t h = hash_cstr("node_add");
h = hash_merge(h, hash_node(n->u.node_add.lv));
h = hash_merge(h, hash_node(n->u.node_add.rv));
return h;

}

The latter is a Merkle-tree construction: the hash of a par-
ent re-uses the already computed hashes of its children, en-
suring that two identical sub-trees—regardless of where they
appear—share the same digest. Because ASTro names spe-
cialized dispatchers after this digest, any process can look
up machine code produced earlier.
ASTro ships default hashers for the common field types

such as integers, C strings, and child nodes, so users need
to supply custom functions only when a node stores non-
standard fields (e.g. pointers to user-defined structs).
2EVAL_ARG(c, n) is simply defined with (*n##_disp)(c, n)

ASTro: An AST-Based Reusable Optimization Framework VMIL ’25, October 12–18, 2025, Singapore, Singapore

3.6 Utility Functions
ASTroGen automatically emits two auxiliary families of rou-
tines that facilitate front-end integration and debugging.

Allocators (ALLOC_*). For each node type the generator
produces an allocator, such as ALLOC_node_num(int32_t n),
that calls a user-supplied function3 to obtain memory and
then initializes the node’s header as well as its fields. A parser
generated by parser generators, or any hand-written front
end, can therefore construct the AST simply by invoking the
appropriate ALLOC_* helpers, without direct knowledge of
the node layout.

Dumpers (DUMP_*). Every node also has a printer that
writes a human-readable representation of the node’s kind
and attributes. These dumpers are indispensable when debug-
ging specialization failures or verifying that distinct syntax
trees indeed share the same Merkle hash. For built-in fields
(integers, C strings, child node pointers) ASTro provides de-
fault formatters; if a node stores application-specific data
(e.g., a pointer to a user-defined struct), the implementer
needs to supply a custom dumper for it.

3.7 Partial Evaluator
Each node type comes with a SPECIALIZE_* routine that
generates a specialized dispatcher in C. Given a concrete
node instance, the routine prints a specialized DISPATCH
function whose arguments are hard-wired constants; it never
inspects, let alone rewrites, the underlying EVAL_* imple-
mentation. A commodity C compiler can therefore inline the
tiny dispatcher together with the generic evaluator, remov-
ing every layer of indirection.

Leaf node (numeric literal).
static void
SPECIALIZE_node_num(FILE *fp, NODE *n)
{ /* name is SD_<hash> */

const char *name = alloc_dispatcher_name(n);
n->head.dispatcher_name = name;

fprintf(fp, "static VALUE\n");
fprintf(fp, "%s(CTX *c, NODE *n)\n{\n", dname);
fprintf(fp, " return EVAL_node_num(c, n, %d);\n",

n->u.node_num.num);
fprintf(fp, "}\n");

}

A node such as node_num(1) thus yields a dispatcher that
does nothing but call EVAL_node_num(c, n, 1).

Specialized function names always begin with SD_ (short
for "Specialised Dispatcher"), followed by the node’s Merkle
hash—for example SD_dfb75fdabb0d5ef6.

Internal node (addition).

3User needs to provide node_allocate(size_t size) for allocators.

The specialising routine for node_add first recurses on
its children, then emits a dispatcher that delegates to the
already specialized children:
static void
SPECIALIZE_node_add(FILE *fp, NODE *n)
{ SPECIALIZE(fp, n->u.node_add.lv);

SPECIALIZE(fp, n->u.node_add.rv);

const char *dname = alloc_dispatcher_name(n);
n->head.dispatcher_name = dname;

fprintf(fp, "static VALUE\n");
fprintf(fp, "%s(CTX *c, NODE *n)\n", dname);
fprintf(fp, "{ return EVAL_node_add(c, n,\n");
fprintf(fp, " n->u.node_add.lv, %s,\n",

n->u.node_add.lv->head.dispatcher_name);
fprintf(fp, " n->u.node_add.rv, %s);\n",

n->u.node_add.rv->head.dispatcher_name);
fprintf(fp, "}\n\n");

}

Here, each child’s dispatcher_name is recorded while
specializing them, then passed to the parent’s evaluator.
For example, when SPECIALIZE_node_add() is invoked

on a actual node, it prints the dispatcher like below:
static VALUE
SD_dfb75fdabb0d5ef6(CTX *c, NODE *n)
{

return EVAL_node_add(c, n,
n->u.node_add.lv, SD_ef2d3a2c467c98a6,
n->u.node_add.rv, SD_fa5c4f2645bc412

);
}

Inlining by C compilers.
Because the generated code embeds concrete dispatcher

function pointers, commodity C compilers can resolve these
calls at compile time and inline the referenced functions
aggressively, effectively removing the dispatch overhead.
In other words, a partial evaluator can be constructed

merely by generating dispatcher functions, producing C code
whose structure directly reflects the AST and can be recog-
nized and optimized by commodity C compilers.

Specializing the following AST
// 1 + 2 * 3
node_add(node_num(1),

node_mul(node_num(2),
node_num(3)))

produces five specialized dispatchers in total; with the gcc
version 13.3.0 (x86_64) the outermost one compiles to:
0000000000001a20 <SD_dfb75fdabb0d5ef6>:

1a20: endbr64
1a24: mov $0x7,%eax ; literal 7
1a29: ret

VMIL ’25, October 12–18, 2025, Singapore, Singapore Koichi Sasada

As we can see, all nodes were successfully inlined, and the
resulting native code simply returns the final value 7.

Any future execution that encounters a sub-tree with the
same hash can simply locate SD_dfb75fdabb0d5ef6 in the
cache and jump to it, bypassing interpretation entirely.

3.8 When and How to Exploit Specialized Code
The partial evaluator turns an AST into specialized C code
that a commodity compiler translates to efficient native code.
How that capability is exploited depends on the desired work-
flow; ASTro supports four canonical scenarios.

1. Plain interpreter. When the partial evaluator is left
off, ASTroGen generates a straightforward tree-traversal
interpreter. The ability to obtain such an engine from noth-
ing but a single node.def file—parsing logic aside—greatly
accelerates early prototyping.
Even in this “pure interpreter” mode, developers are free

to pre-specialize a small library of high-frequency sub-trees
before shipping. Typical examples include nodes that re-
turn the constant 0, load the first local variable, or store 0
into the second local variable—where the last is typically
implemented as a compound of multiple nodes. Since each
pre-specialized fragment is named by its Merkle hash, the in-
terpreter can embed pre-specialized binaries and accelerate
hot micro-patterns without invoking the full JIT machinery.

2. Ahead-of-time (AOT) compiler and specialized in-
terpreter. The front end parses the source program and feeds
the resulting AST directly to the partial evaluator, producing
specialized code without ever executing the interpreter. The
resulting code can be used as a specialized interpreter or a
standalone executable for the given source program. This
yields performance that exceeds interpreter speed, all from
just a node.def description.

If the language’s call targets are statically resolvable, whole-
program inlining may even collapse the entire application
into a single monolithic function.

3. Profile-guided AOT compiler and interpreter. Pro-
grams executed once are often executed again. At interpreter
shutdown ASTro can specialize every sub-tree that was actu-
ally executed, compile them and store them with the Merkle
hash. On the next run, the interpreter can reuse them for
the same ASTs and otherwise fall back to normal interpreta-
tion. Profile data—such as inline caches of method lookup
in a dynamic language—can be recorded on each node and
fed back into the specializer, allowing it to embed guarded
predictions of future call targets.

4. Just-in-time (JIT) compiler. While the program is
running, hot paths can be identified, specialized into C with
our partial evaluator, compiled, and dynamically loaded. Al-
though invoking a full C compiler is expensive, ASTro mit-
igates the cost by hashing: once a hot fragment has been
compiled by any process—on the same machine, another

node in the cluster, or even an off-planet data center—it can
be reused simply by looking up its hash.

In short, our specialization mechanism underlies an AOT
compiler, a conventional interpreter, a profile-guided hybrid,
and a JIT engine, with the Merkle-tree hash acting as the
unifying abstraction for code reuse across runs.

4 Evaluation
To assess both the implementation effort and the runtime per-
formance of ASTro, we implemented naruby, a deliberately
minimal subset of the Ruby programming language.4

4.1 naruby: Not A Ruby
The name “naruby” abbreviates Not A Ruby: the subset is
intentionally minimal and eschews Ruby’s object system
entirely. The only runtime value type is a signed integer.

Context and local variables. The runtime context com-
prises a value stack whose top segment serves as the fixed-
size frame for the current function, thereby holding all local
variables. node_lget and node_lset are provided to access
the local variables, and node_scope is provided to prepare
the toplevel frame.

The global function table described below is stored in the
same context structure.

Control flow. naruby recognizes exactly three control
flow constructs: (1) a sequence (node_seq) that evaluates its
children from left to right, (2) an if-statement (node_if), and
(3) a while-statement (node_while).

Function definition and call. A node_def appends a
triple (name, arity, AST) to the global function table, storing
the function’s identifier, the number of parameters it expects,
and a pointer to its body. If a function with the same name is
already registered, the new definition overrides the previous
one.
At call time the callee is first located by a linear strcmp

search with the function name over the global function ta-
ble. The result of this search is then written into an inline
cache stored in the node_call node. The execution context
maintains a monotonically increasing function-table version;
whenever the table is updated, the version is bumped. The
cache records the version number at which it was filled, and
on subsequent executions the call site reuses the cached AST
pointer whenever the stored version matches the current
one, thereby bypassing the strcmp scan entirely. Finally, ar-
guments are pushed onto the topmost slots of the value stack
before control transfers to the callee.
To expose call-site cache information to the specializer,

we added a node_call2 node which has a cached_callee
field that stores the dispatcher found by the inline cache at
run time. When a call-site sees the same target repeatedly (a
4Ruby was chosen simply because the author was familiar with extracting
its AST; no other reason influenced this choice.

ASTro: An AST-Based Reusable Optimization Framework VMIL ’25, October 12–18, 2025, Singapore, Singapore

cache hit), logic in the interpreter switches to node_call2
and a cached_callee to invoke the stored pointer directly.
Because the dispatch target is now a concrete function pointer,
the partial evaluator can treat it as a constant and inline the
call into the caller’s code during specialization.

Built-in arithmetic. The basic arithmetic operations are
realized as dedicated AST nodes rather than as library calls.

All Node Types (21 types):
• Literals: node_num (integer constant)
• Control flow: node_seq, node_if, node_while
• Local variables: node_scope, node_lget, node_lset
• Functions: node_def,
node_call, node_call2

• Binary operators: node_add (+), node_sub (-),
node_mul (*), node_div (/), node_mod (%), node_eq (==),
node_neq (!=), node_lt (<), node_le (<=), node_gt (>),
node_ge (>=)

Front-end construction. We reuse the standard Ruby
parser to obtain a full Ruby AST and then translate it node-
for-node into naruby’s AST with ALLOC_* functions. Any
Ruby construct that lacks a naruby counterpart results in a
compile-time error.

4.2 Authoring Effort
The entire node.def for naruby is about 300 lines of code.
ASTro generates a baseline interpreter from it with a partial
evaluator. To make a usable interpreter, we also need a parser
to generate the AST, a command-line option parser, a garbage
collector and so on.
Implementing the semantics of each node is straightfor-

ward and declarative; for example, the node_if construct
can be defined as follows:
NODE_DEF
node_if(CTX *c, NODE *n, NODE *cond,

NODE *then_node, NODE *else_node)
{

if (EVAL_ARG(c, cond))
return EVAL_ARG(c, then_node);

else
return EVAL_ARG(c, else_node);

}

A hand-written source-to-C transpiler is a conceivable
alternative but more complex than a tree-walking interpreter.
It must translate all control flow into valid C, even though
such constructs often have no direct counterpart. By contrast,
ASTro requires only per-node descriptions of semantics in
C, making the implementation far more straightforward.

4.3 Performance
Performance was evaluated using four micro benchmarks
written in naruby:

• loop: 100 million iterations of an empty while loop.

Table 1. Micro benchmark results on x86_64 in seconds

loop fib call prime_count

naruby/interpret 0.786 4.870 6.760 6.170
naruby/compiled 0.001 1.093 3.435 0.444

naruby/pg 0.001 1.143 2.061 0.443
gcc/-O0 0.042 0.480 1.121 0.490
gcc/-O1 0.023 0.400 1.027 0.005
gcc/-O2 0.001 0.115 0.318 0.434

Table 2. Micro benchmark results on RISC-V in seconds

loop fib call prime_count

naruby/interpret 8.096 45.580 62.268 53.177
naruby/compiled 0.003 6.834 17.657 1.289

naruby/pg 0.003 7.053 8.566 1.289
gcc/-O0 0.544 5.481 8.385 2.476
gcc/-O1 0.061 1.132 3.151 0.017
gcc/-O2 0.002 0.604 1.575 1.280

• fib: naive recursive computation the 40th Fibonacci
number.

• call: one million chained calls through a ten-function
pipeline (def f0(n)=f1(n), . . ., def f9(n)=n)5.

• prime_count: naive counting of all primes ≤ 100 000,
repeated 100 times.

All benchmarks measure wall-clock time, from process
startup to termination (including parsing and loading com-
piled code), and report the median of three runs.

We evaluate the following configurations:
• naruby/interpret executes via the pure AST traversal
interpreter.

• naruby/compiled uses ahead-of-time (AOT) compi-
lation of the specialized C output. Compilation time is
not included.

• naruby/pg uses profile-guided compilation of the spe-
cialized C output. Profiling and compilation time are
not included.

• gcc/-O0 to -O2 are the same benchmark programs
ported to C and compiledwithGCC optimization levels
-O0, -O1, and -O26. Compilation time is not included.

All naruby binaries are compiled with GCC (-O3). The
experiments were carried out on two target platforms:

• x86_64: AMD Ryzen 9 5900HX, Ubuntu 24.04, GCC
13.3.0

• RISC-V: lpi4a board, Linux 5.10, GCC 13.2.0

5In the C-ported version, each 𝑓𝑛 () is placed in a separate source file to
prevent inlining.
6We omit gcc/-O3 results because they did not differ from -O2 on these
benchmarks.

VMIL ’25, October 12–18, 2025, Singapore, Singapore Koichi Sasada

Because ASTro generates C code, we can easily run naruby
on a RISC-V machine.
Table 1 and 2 show the micro benchmark results. The

naruby/compiled achieves dramatic speedups over the in-
terpreter baseline, closing in on—or even surpassing— gcc/-O0
in arithmetic intensive benchmarks. In the loop benchmark,
the C compiler removes the loop entirely for specialized
code from our partial evaluator, driving execution time to
near-zero. prime_count on RISC–V run roughly twice as fast
as gcc/-O07. In the call benchmark, profile-guided compi-
lation (naruby/pg) further reduces call overhead, though
it still does not quite match gcc/-O0—an issue we plan to
investigate.

Overall, the fact that a AST-traversal interpreter, specified
solely via node.def, can approach gcc/-O0 performance is
a remarkable validation of the ASTro framework.

4.4 Generated File and Compilation Time
To evaluate code generation and compilation overhead, we
constructed a synthetic input file consisting of 10,000 lines
of the form a = 1, a = 2, ..., a = 10_000. Parsing this
input yielded 30,000 AST nodes. Partial evaluation gener-
ated 409,994 lines of specialized C code, including comments.
The resulting C code was compiled in 16.9 seconds on the
x86_64 machine described in subsection 4.3. Handling the
compilation time remains an open issue.

5 Discussion
5.1 Limitations
ASTro achieves good performance at low engineering cost,
but the design choices that enable this simplicity also set
boundaries on what the framework can achieve.

C as the Backend Ceiling. Unlike a hand-written JIT
compiler that can emit arbitrarymachine instructions, ASTro
generates C code and therefore inherits the semantic and
performance limitations of the C language and its toolchain.
Low-level operations—such as deoptimization or instruction-
set-specific optimizations—are beyond its reach.

Compiler-bound optimization quality. Since all heavy
optimization is delegated to the C compiler, runtime speed
cannot exceed the optimizer’s capabilities. Differences in
inlining heuristics, vectorization thresholds, or register al-
locators can translate directly into performance variance
across platforms and compiler versions. In our experiments,
we did not provide any parameters related to inlining, but for
larger-scale programs, compiler-specific parameter tuning
will likely be required.

Exception handling costs. Implementing exceptions in
C essentially requires either (i) checking an error flag after

7In the prime_count benchmark, the gcc/-O2 build is unexpectedly slower
than gcc/-O1, indicating a possible inlining pathology in GCC’s optimizer.

every function call or (ii) using setjmp/longjmp for non-
local exits. The former introduces a strict rule for users;
the latter adds a setjmp frame to every protected call site,
which can negatively impact performance or interfere with
optimizations such as tail-call elimination. C++’s try/catch
is one option.

Reflections on the Limitations. As discussed, ASTro
faces performance limitations and cannot reach the peak
speeds achieved by hand-crafted JIT compilers. However,
its core advantage lies in its low adoption cost: users can
employ ASTro with minimal effort—particularly C program-
mers, who require little additional system-specific knowl-
edge—while still achieving respectable performance. Unlike
JIT systems, which often require significant engineering ef-
fort, ASTro provides a lightweight and accessible approach
to code generation. Furthermore, the generated C code is
clear and human-readable, making debugging more straight-
forward than with native compilers when necessary.

5.2 Code-Cache Considerations
Code-size explosion. Partial evaluation is notorious for

generating large amounts of specialized code when applied
indiscriminately. ASTro has not yet addressed this issue, and
we intend to explore well-known mitigation techniques in
future work.

One practical approach to control inlining is to customize
the hash function for specific node types. For example, a
numeric literal node could return a unique hash for small
constants (so they remain inlined), but map large constants to
a fixed value like 0, encouraging reuse of a default dispatcher.

Context-aware hashing. The current cache key depends
solely on AST structure. In practice, some runtime context
will matter; the open question is which context to fold in.
We plan to survey existing context-sensitive schemes before
designing an ASTro-specific variant.

Hash safety. We use MurmurHash3[1] for speed, but
have not yet analysed the consequences of hash collisions.
A cryptographic hash would improve safety at the cost of
extra CPU cycles—another trade-off that deserves empirical
study.

Process-portable literals. Because ASTro embeds literal
data directly into the specialized code, data whose address
is process-specific (e.g. a pointer to the interned strings)
cannot yet be shared across processes. We are investigating
COPY&PATCH[16], which materialises process-specific data
lazily after the code has been loaded.

Repository architecture. Modern cloud deployments of-
ten execute the same application across multiple processes or
nodes. We envisage a dedicated code repository that answers
“do you have a code named hash h?” queries. If the com-
piled fragment exists, the repository sends the code back;

ASTro: An AST-Based Reusable Optimization Framework VMIL ’25, October 12–18, 2025, Singapore, Singapore

otherwise the interpreter may send the AST and request
compilation. Using Merkle hashes as keys lets the same pro-
tocol work consistently—from in-process caches, through
cross-machine clusters, and out to geographically distributed
datacenter deployments at almost astro-scale.

Cache Granularity. Determining what to store and at
which granularity remains an open design question. For
widely used libraries, it may suffice to cache entire function-
or method-level subtrees. Caching every possible subtree,
however, risks explosive growth; alternatively, one could fo-
cus on leaf-proximate subtrees that occur frequently. Build-
ing a real-world code repository and observing application
workloads will reveal the optimal balance between cache
coverage and storage cost.

5.3 Applicability
Static type systems remain unexplored. The present

evaluation focuses on a dynamically-typed language; we
have not yet experimented with a statically-typed one. Since
ASTro makes no assumptions about types, a separate type-
checking phase or type annotations on node definitions
would need to be introduced.

In a statically-typed setting, each node would produce a
typed result, but it is not immediately clear how well the cur-
rent specializer–dispatcher scheme can accommodate this.
Whether the framework can propagate static types to enable
further optimizations, or whether it would require significant
extensions (e.g., type-parameterized node variants), remains
an open question for future work.

Backend language. In this work, we implemented ASTro
using C as the backend language. Whether other languages
can serve as viable backends remains an open question. In
practice, the usefulness of a backend will largely depend on
how aggressively its compiler performs inlining and related
optimizations.

6 Related Work
This section reviews previous systems that intersect with
ASTro.

RPython. PyPy’s translation toolchain specializes an in-
terpreter written in a restricted subset of Python [3, 12].
An abstract interpreter infers types and effects, after which
multiple transformation passes emit a translated code and a
meta-tracing JIT. ASTro adopts the same “single interpreter
as ground truth” philosophy, but eliminates the complicated
stages by off-loading low-level optimization to a commodity
C compiler.

Futamura projections. The classic work of Futamura [5]
formalized the notion that specializing an interpreter with
respect to a source program yields a compiler. Subsequent
surveys, most notably by Jones et al. [6], systematized offline

vs. online partial evaluation and introduced binding-time
analyses.

Truffle/Graal. The Truffle framework specializes an AST
traversal interpreter at runtime and the Graal compiler gen-
erates high performance native code [13–15]. Profiling data
guides partial evaluation within the JVM. ASTro likewise
generates node-specific code, but delegates all machine-code
generation to an external C compiler, thereby avoiding a
JVM/Truffle/Graal dependency.

Truffle also supports advanced profiling and inline caches
(e.g., Dispatch Chains [9]). It is still unclear whether ASTro
can achieve such advanced optimizations with commodity
C compilers.

AST vs. Bytecode. Larose et al. challenge the folklore that
bytecode interpreters outperform AST-based ones by imple-
menting both styles. They show that AST variants match
or slightly exceed bytecode in raw and JIT-compiled speed,
though bytecode remains more compact at large scale [7].
Our work confirms that AST-based runtimes deserve recon-
sideration within meta-compilation systems. Furthermore,
our representation based on the Merkle-tree hash naturally
enables the supernode optimization identified in that paper.

Cython. Projects like Cython [2] lower a subset of high-
level languages to C (or llvm-ir) to piggy-back on mature
toolchains. ASTro shares the same “let GCC/Clang do the
heavy lifting” insight, but differs in that it emits interpreter
specializations rather than transpiling.

Vmgen. Like Vmgen [4], which generates a complete effi-
cient virtual machine in C from declarative descriptions of
its byte-code instructions, ASTroGen produces an entire tree-
traversal interpreter from declarative node specifications. In
other words, Vmgen specializes on VM instructions, whereas
ASTroGen specializes on AST nodes; both approaches let
the author describe behavior once and obtain the supporting
runtime infrastructure automatically.

Cross-process Code Caching. Mehta et al. demonstrate
that JIT-compiled methods can be persisted in an off-line
repository and reloaded in later executions when the dy-
namic context matches, cutting warm-up time [10]. ShareJIT
extends the Android Runtime with a global code cache that
allows JIT fragments to be shared across applications and
processes by restricting the optimizer so that the resulting
machine code is context-agnostic [17]. All of these systems
key the cache by a mix of runtime context and compiler
flags. ASTro applies the Merkle-tree idea at the granularity
of AST sub-trees, enabling cross-process reuse of specialized
code—something traditional build caches cannot exploit be-
cause they lack structural information about the AST.

VMIL ’25, October 12–18, 2025, Singapore, Singapore Koichi Sasada

7 Conclusion
Building a programming language interpreter from inter-
preter definitions alone is often caught between two ex-
tremes: hand-written interpreters, easy to modify but slow,
and partial-evaluation frameworks, high-performance but
complex, heavyweight, and platform-specific.ASTro bridges
this gap by using a commodity C compiler as its backend. A
key insight is the separation of dispatchers from per-node
evaluators. This design allows the partial evaluator to gen-
erate specialized code simply by creating new dispatchers,
without modifying the original user-defined node defini-
tions. The resulting C code is structured to enable aggres-
sive inlining by C compilers. By emitting plain, optimizable
C code and naming each specialized AST sub-tree with a
Merkle-tree hash for cross-process reuse, ASTro preserves
the interpreter-only authoring model while achieving com-
petitive performance.
Our naruby case study demonstrates that an evaluator

and partial evaluator for a small dynamically-typed language
can be implemented in just 300 lines of handwritten code.
ASTroGen automatically expands this into approximately
2,500 lines of C source code. Ahead-of-time (AOT) compila-
tion achieves performance close to that of gcc/-O0, while
profile-guided (PG) compilation delivers further improve-
ments—doubling performance over AOT on the call bench-
mark in the RISC-V environment.

Future Work. We plan to extend ASTro in three direc-
tions. First, supporting richer language features such as
objects, exceptions, and garbage collection will help evalu-
ate the framework’s scalability, and allow us to assess how
known optimizations can further improve performance. Sec-
ond, we aim to explore JIT compilation within the ASTro
framework. Finally, a shared, networked cache could allow
large-scale deployments to amortize compilation costs across
machines or edge devices.

Acknowledgments
We would like to thank Prof. Hidehiko Masuhara (Institute
of Science Tokyo) for his valuable comments in the early
stages of this research. We would also like to thank Benoit
Daloze (Oracle Labs) for reviewing this paper and providing
helpful comments, especially regarding Truffle/Graal.

A Toy language Declarations
ASTroGen is based on the following basic types. Additional
fields may be added to store source location or profiling
information.

// The user needs to provide VALUE definition.
typedef struct Node NODE;
typedef VALUE (*node_dispatcher_func_t)

(CTX *c, NODE *n);
typedef uint64_t node_hash_t;

typedef node_hash_t (*node_hash_func_t)(NODE *n);
typedef void (*node_specializer_func_t)

(FILE *f, NODE *n);
typedef void (*node_dumper_func_t)

(FILE *f, NODE *n, bool online);

struct NodeKind {
const char *default_dispatcher_name;
node_dispatcher_func_t default_dispatcher;
node_hash_func_t hash_func;
node_specializer_func_t specializer;
node_dumper_func_t dumper;

};

struct NodeHead {
struct NodeFlags {

bool has_hash_value;
bool is_specialized;
bool is_specializing;
// to prohibit recursive specializing

bool is_dumping;
// to prohibit recursive dumping

} flags;
const struct NodeKind *kind;
struct Node *parent;
node_hash_t hash_value;
const char *dispatcher_name;
node_dispatcher_func_t dispatcher;

};

Given a definition file such as node.def (listed in Figure 2),
ASTroGen generates the following C declarations.

struct node_num_struct {
int32_t num;

};
struct node_add_struct {

NODE * lv;
NODE * rv;

};
struct node_mul_struct {

NODE * lv;
NODE * rv;

};
struct Node {

struct NodeHead head;
union {

struct node_num_struct node_num;
struct node_add_struct node_add;
struct node_mul_struct node_mul;

}u;
};

ASTro: An AST-Based Reusable Optimization Framework VMIL ’25, October 12–18, 2025, Singapore, Singapore

References
[1] Austin Appleby. 2011. MurmurHash3. https://github.com/aappleby/

smhasher. Accessed: 2025-07-21.
[2] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin,

Dag Sverre Seljebotn, and Kurt Smith. 2011. Cython: The Best of
Both Worlds. Computing in Science and Engg. 13, 2 (March 2011),
31–39. doi:10.1109/MCSE.2010.118

[3] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin
Rigo. 2009. Tracing the meta-level: PyPy’s tracing JIT compiler. In
Proceedings of the 4th Workshop on the Implementation, Compilation,
Optimization of Object-Oriented Languages and Programming Systems
(Genova, Italy) (ICOOOLPS ’09). Association for Computing Machinery,
New York, NY, USA, 18–25. doi:10.1145/1565824.1565827

[4] M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan. 2002.
Vmgen: a generator of efficient virtual machine interpreters. Softw.
Pract. Exper. 32, 3 (March 2002), 265–294. doi:10.1002/spe.434

[5] Yoshihiko Futamura. 1999. Partial Evaluation of Computation Pro-
cess—AnApproach to a Compiler-Compiler. Higher Order Symbol.
Comput. 12, 4 (Dec. 1999), 381–391. doi:10.1023/A:1010095604496

[6] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. 1993. Partial
evaluation and automatic program generation. Prentice-Hall, Inc., USA.

[7] Octave Larose, Sophie Kaleba, Humphrey Burchell, and Stefan Marr.
2023. AST vs. Bytecode: Interpreters in the Age of Meta-Compilation.
Proc. ACMProgram. Lang. 7, OOPSLA2, Article 233 (Oct. 2023), 29 pages.
doi:10.1145/3622808

[8] Stefan Marr and Stéphane Ducasse. 2015. Tracing vs. partial evalu-
ation: comparing meta-compilation approaches for self-optimizing
interpreters. SIGPLAN Not. 50, 10 (Oct. 2015), 821–839. doi:10.1145/
2858965.2814275

[9] StefanMarr, Chris Seaton, and Stéphane Ducasse. 2015. Zero-Overhead
Metaprogramming: Reflection and Metaobject Protocols Fast and with-
out Compromises. In Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’15). ACM,
545–554. doi:10.1145/2737924.2737963

[10] Meetesh Kalpesh Mehta, Sebastián Krynski, Hugo Musso Gualandi,
Manas Thakur, and Jan Vitek. 2023. Reusing Just-in-Time Compiled

Code. Proc. ACM Program. Lang. 7, OOPSLA2, Article 263 (Oct. 2023),
22 pages. doi:10.1145/3622839

[11] Ralph C. Merkle. 1987. A Digital Signature Based on a Conventional
Encryption Function. In A Conference on the Theory and Applications
of Cryptographic Techniques on Advances in Cryptology (CRYPTO ’87).
Springer-Verlag, Berlin, Heidelberg, 369–378.

[12] Armin Rigo and Samuele Pedroni. 2006. PyPy’s approach to virtual ma-
chine construction. InCompanion to the 21st ACM SIGPLAN Symposium
on Object-Oriented Programming Systems, Languages, and Applications
(Portland, Oregon, USA) (OOPSLA ’06). Association for Computing
Machinery, New York, NY, USA, 944–953. doi:10.1145/1176617.1176753

[13] Christian Wimmer and Thomas Würthinger. 2012. Truffle: a self-
optimizing runtime system. In Proceedings of the 3rd Annual Conference
on Systems, Programming, and Applications: Software for Humanity
(Tucson, Arizona, USA) (SPLASH ’12). Association for Computing
Machinery, New York, NY, USA, 13–14. doi:10.1145/2384716.2384723

[14] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas
Wöß, Lukas Stadler, Chris Seaton, Gilles Duboscq, Doug Simon,
and Matthias Grimmer. 2017. Practical partial evaluation for high-
performance dynamic language runtimes. SIGPLAN Not. 52, 6 (June
2017), 662–676. doi:10.1145/3140587.3062381

[15] Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq,
Doug Simon, and Christian Wimmer. 2012. Self-optimizing AST inter-
preters. In Proceedings of the 8th Symposium on Dynamic Languages
(Tucson, Arizona, USA) (DLS ’12). Association for Computing Machin-
ery, New York, NY, USA, 73–82. doi:10.1145/2384577.2384587

[16] Haoran Xu and Fredrik Kjolstad. 2021. Copy-and-patch compilation:
a fast compilation algorithm for high-level languages and bytecode.
Proc. ACM Program. Lang. 5, OOPSLA, Article 136 (Oct. 2021), 30 pages.
doi:10.1145/3485513

[17] Xiaoran Xu, Keith Cooper, Jacob Brock, Yan Zhang, and Handong Ye.
2018. ShareJIT: JIT code cache sharing across processes and its practical
implementation. Proc. ACM Program. Lang. 2, OOPSLA, Article 124
(Oct. 2018), 23 pages. doi:10.1145/3276494

Received 2025-07-20; accepted 2025-08-11

https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1145/1565824.1565827
https://doi.org/10.1002/spe.434
https://doi.org/10.1023/A:1010095604496
https://doi.org/10.1145/3622808
https://doi.org/10.1145/2858965.2814275
https://doi.org/10.1145/2858965.2814275
https://doi.org/10.1145/2737924.2737963
https://doi.org/10.1145/3622839
https://doi.org/10.1145/1176617.1176753
https://doi.org/10.1145/2384716.2384723
https://doi.org/10.1145/3140587.3062381
https://doi.org/10.1145/2384577.2384587
https://doi.org/10.1145/3485513
https://doi.org/10.1145/3276494

	Abstract
	1 Introduction
	2 Background
	2.1 Tree-Traversal Interpreters
	2.2 Byte-code Virtual Machines and JIT Compilers
	2.3 Partial Evaluation
	2.4 Existing Frameworks

	3 ASTro Framework
	3.1 Workflow Overview
	3.2 Sample Scenario
	3.3 Declarations
	3.4 Node Evaluators
	3.5 Computing Node Hashes
	3.6 Utility Functions
	3.7 Partial Evaluator
	3.8 When and How to Exploit Specialized Code

	4 Evaluation
	4.1 naruby: Not A Ruby
	4.2 Authoring Effort
	4.3 Performance
	4.4 Generated File and Compilation Time

	5 Discussion
	5.1 Limitations
	5.2 Code-Cache Considerations
	5.3 Applicability

	6 Related Work
	7 Conclusion
	A Toy language Declarations
	References

