
Precompiling Ruby scripts

Myth& Fact
Koichi Sasada
ko1@heroku.com

Questions

Have you ever thought

Ruby

is slow?

Quick answer

•Try latest MRI contains optimized VM
•Ruby 1.9 and later implement VMs
•Ruby 2.3 (Dec/2015) also includes many
improvements
•VMs are written by Koichi Sasada

Questions

Have you ever thought

Ruby’s GC

is slow?

Quick answer

•Try Ruby 2.1 and later
•Generational and incremental techniques
to increase throughput and to reduce GC
pause time
•GCs are implemented by Koichi Sasada

Questions

Have you ever thought

Ruby/Rails boot time

is slow?

Quick answer

•Check out this presentation :p

•This presentation is by Koichi Sasada
•A programmer living in Tokyo, Japan
•Ruby core committer since 2007

Koichi is an Employee

Koichi is a member of Heroku Matz team

•Heroku employs three full time Ruby core
developers in Japan named “Matz team”

Matz Nobu Koichi (ko1)

Mission of Heroku Matz’s team

Design Ruby language
and improve quality of MRI

Latest achievement: Ruby 2.3

Next challenge: Ruby 2.4

and Ruby 3

Feel free to ask about Ruby itself later

Back to “Question”

Have you ever thought

Ruby/Rails boot time

is slow?

Myth

“If we have an AOT
compiler, the boot time

issue will be solved”

OK, let’s try it.

Today’s talk is about:

•New feature of Ruby 2.3

“Pre-compilation primitives”

•Yomikomu gem: what is and how to use it.

•Evaluation results includes redmine boot time

New feature of Ruby 2.3
“Pre-compilation primitives”

Compilers for interpreters

• JIT (just in time) compilers
• Compile to more efficient code at runtime
• Runtime statistics information are available

•AOT (ahead of time) compilers
• Program to native machine code (like C, …)
• Program to other languages code

• Translate to C, Java, etc…

• Program to persistent byte code (like Java, …)
• RubyVM::InstructionSequence in Ruby’s case

RubyVM::InstructionSequence or ISeq
Ruby’s bytecode
•All of Ruby programs are compiled to ISeqs

•MRI makes ISeqs at boot time

Bundled
Libraries

Gem
Libraries

Your application code

Interpret on RubyVM

Ruby
script

Parse

Compile

Ruby
Bytecode (ISeq)

Embedded
classes and methods

Evaluator

Before
pre-compilation

After
pre-compilation

Interpret on RubyVM

Ruby
script

Parse

Compile

Ruby
Bytecode (ISeq)

Embedded
classes and methods

Evaluator

Compiled
binary

Load

Pre-compilation utility

Parse/compile
Ruby scripts

Bundled
Libraries

Gem
Libraries

Your application code

Purpose of pre-compilation

• Fast boot

• Reduce memory consumption

• Migrate compiled code to other nodes

Purpose of pre-compilation
Goal of this time
• Fast boot

• Reduce memory consumption

• Migrate compiled code to other nodes

No portable binary support

No verification at loading time

[Because we can’t not trust binaries by others]

Out of scope

Goal:
Fast boot

Interpret on RubyVM

Ruby
script

Parse

Compile

Ruby
Bytecode (ISeq)

Embedded
classes and methods

Evaluator

Compiled
binary

Load

Pre-compilation utility

Parse/compile
Ruby scripts

Bundled
Libraries

Gem
Libraries

Your application code

Goal: Memory consumption
Current issue

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1

1

iseq_setup@compile.c 15,595,764

rb_iseq_new_with_opt@iseq.c 5,231,136

heap_assign_page@gc.c 40,518,400

st_init_table_with_size@st.c 18,994,480

rb_str_buf_new@string.c 4,817,252

st_update@st.c 6,578,736

onig_region_resize@regexec.c 4,891,968

others 37,676,810

ISeq consumes 15% (20MB) on simple Rails app

Purpose: Memory consumption
Current issue on multi-processes

Bytecodes
Bytecodes

Process

Bytecodes

Independent BCs

Shared
Bytecode

Data

Process

BC

(Partialy) Shared BCs

Actual Expected

Design and implementation of
primitives on Ruby 2.3

We need two components

1. Serializer and deserializer for ISeq

2. Utility to control AOT compilation
•When to compile scripts and load them?
•Where/How to store compiled binaries?

Serializer and deserializer of ISeq

Ruby script

Compiled
binary ISeq

Ruby process

ISeq

Ruby process

Read, parse
and compile

Serialize
and store

Ruby
process

Ruby
Process

ISeq
ISeq

ISeq

Ruby
process

Load and
deserialize

Pre-compilation

(background)
ISeq is a tree

•Basically, each scope has own ISeq
• A top-level has class expressions
• Class expression has method definitions
• Method definition has blocks
• Block has blocks, …
• Other bytecode blocks

• ensure, rescue, …

• And other exceptional cases

toplevel

class C1 class C2

def m1 def m2

Ruby script

Specify compiled binary data format

Hea
der

Iseq list ID list
Object

list
BC
1

BC
2

ID
1

ID
2

obj
1

obj
2

• Iseq (BC), ID, Objects are pointed by index of each lists in each data
• Referred objects are serialized
• Dump machine dependent data (can’t migrate compiled code)
• No verifier (because this file is not for migrations)

Optimization technique
Lazy loading

Lazy loading

•Do not load all of ISeq at once
• Load ISeq if needed
• Similar to “autoload” method

Technique
Lazy loading

Toplevel
(empty)

Compiled
binary

toplevel
C1,C2,
m1,m2

Ruby script

class C1
def m1; end
def m2; end

end
C1.new.m2
class C2; end

(1)Load and make an empty toplevel ISeq

Technique
Lazy loading

Toplevel

Compiled
binary

toplevel
C1,C2,
m1,m2

(2) Load toplevel ISeq and make
empty C1, C2 ISeqs and evaluate
toplevel ISeq

class C1
(empty)

class C2
(empty)

Ruby script

class C1
def m1; end
def m2; end

end
C1.new.m2
class C2; end

Technique
Lazy loading

Toplevel

Compiled
binary

toplevel
C1,C2,
m1,m2

(3) Load C1 and evaluate C1
Define m1 and m2 with empty
ISeqs

class C1
class C2
(empty)

def m1
(empty)

def m2
(empty)

Ruby script

class C1
def m1; end
def m2; end

end
C1.new.m2
class C2; end

Technique
Lazy loading

Toplevel

Compiled
binary

toplevel
C1,C2,
m1,m2

(4) Load m2 and invoke m2

class C1
class C2
(empty)

def m1
(empty)

def m2

Ruby script

class C1
def m1; end
def m2; end

end
C1.new.m2
class C2; end

Technique
Lazy loading

Toplevel

Compiled
binary

toplevel
C1,C2,
m1,m2

(4) Load C2 and evaluate C2

class C1 class C2

def m1
(empty)

def m2

Ruby script

class C1
def m1; end
def m2; end

end
C1.new.m2
class C2; end

Interface
API and Tools

How to store compiled binary?

•Compile timing
• Use compiler explicitly

• C/Java/… compilers
• Loading time

• Rubinius (*.rbc), Python (*.pyc), …

• Location of compiled binary
• A file in the same directory of *.rb files
• A file in a special directory
• DB

So many options!

Current (our) solution
Provides primitive APIs
•Serialize and de-serialize APIs

•Loading API

You can try to make your own
pre-compilation controller

Current implementation
Primitive APIs

•Serialize and de-serialize APIs
•RubyVM::InstructionSequence#to_binary
•RubyVM::InstructionSequnece.load_from_binary(binary)

•Loading API
•RubyVM::InstructionSequence.load_iseq

• Call this method at every loading time (if defined)
• This method should return nil or loaded ISeq

Store serialized program and load

Ruby script

Compiled
binary ISeq

Ruby process

ISeq

Ruby process

Read, parse
and compile

Serialize
and store

Ruby
process

Ruby
Process

ISeq
ISeq

ISeq

Ruby
process

Load and
deserialize

Pre-compilation

ISeq#to_binary ISeq#load_from_binary

Using ISeq.load_iseq

Load_internal(fname)

Read, parse and compile
script named fname (x.rb)

require/load process

File name (“x.rb”)

ISeq of x.rb

Load_internal(fname)

Call ISeq.load_iseq(fname)

Read, parse and compile
script named fname (x.rb)

File name (“x.rb”)

ISeq of x.rb

New require/load process

ISeq.load_iseq(fname)

Load and return iseq

Can’t load

Current implementation
APIs (again)

•Serialize and de-serialize APIs
•RubyVM::InstructionSequence#to_binary
•RubyVM::InstructionSequnece.load_from_binary(binary)

•Loading API
•RubyVM::InstructionSequence.load_iseq

• Call this method at every loading time (if defined)
• This method should return nil or loaded ISeq

Yomikomu.gem
Sample implementation of pre-compilation controller

When should we compile?

•Compile timing
• Invoke a compiler explicitly

• C/Java/… compilers
• Invoke during gem installation is a good idea

• Loading time (if not available, compile automatically)
• Python (.pyc), Rubinius (.rbc)

Where to store?

•Make compiled binary files for each script?

•Store compiled binaries in one DB?

Store into DB
Store compiled binary in the

same directory

/a/b/x.rb, x.rb.yarb

y.rb, y.rb.yarb

c/z.rb, z.rb.yarb

Store compiled binary in the
specified directory

/a/b/x.rb, y.rb

c/z.rb

/repos/a_b_x.rb.yarb

a_b_y.rb.yarb

a_c_z.rb.yarb

Binary of x.rb

Binary of y.rb

Binary of z.rb

/a/b/y.rb

/a/b/x.rb

/a/c/z.rb

(Python and Rubinius do)

Where to store?

Store into DB
Store compiled binary in the

same directory

/a/b/x.rb, x.rb.yarb

y.rb, y.rb.yarb

c/z.rb, z.rb.yarb

Store compiled binary in the
specified directory

/a/b/x.rb, y.rb

c/z.rb

/repos/a_b_x.rb.yarb

a_b_y.rb.yarb

a_c_z.rb.yarb

Binary of x.rb

Binary of y.rb

Binary of z.rb

/a/b/y.rb

/a/b/x.rb

/a/c/z.rb

(Python and Rubinius do)

BTW, Matz doesn’t like storing binaries in same dir
because he want to keep src dir clean.

Sample implementation
Yomikomu.gem
•“Yomikomu” = “読み込む” = “loading/reading”

• Implement many options

Usage of Yomikomu
3 steps

(1) Set configuration with environment variables
• Storage options and so on. See documents for details

(2) Compile Ruby scripts with “kakidasu” command
• “kakidasu” = “書き出す” = “write/output”
•$ kakidasu [script or directory]

(3) put “require ‘yomikomu’” on your application
•Compiled binaries are loaded automatically

Configuration
Yomikomu supports several storages
•YOMIKOMU_STORAGE specifies how and where
to store and load compiled binaries
• fs (default)
• fs2
• fsgz
• Fs2gz
•dbm
• flatfile

Configuration
Yomikomu supports 4 basic storages
• fs: put compiled binary files on same directory

• fs2: put compiled binary files on one directory

• dbm: put compiled binaries on one DB (dbm)

Store into DB
Store compiled binary in the

same directory

/a/b/x.rb, x.rb.yarb

y.rb, y.rb.yarb

c/z.rb, z.rb.yarb

Store compiled binary in the
specified directory

/a/b/x.rb, y.rb

c/z.rb

/repos/a_b_x.rb.yarb

a_b_y.rb.yarb

a_c_z.rb.yarb

Binary of x.rb

Binary of y.rb

Binary of z.rb

/a/b/y.rb

/a/b/x.rb

/a/c/z.rb

(Python and Rubinius do)

fs fs2 dbm

Configuration
Yomikomu supports 4 basic storages
• flatfile: put compiled binaries into one file
sequentially (and make index)

• we can locate binaries in loading order

• it does not support rewriting
Binary of x.rb

Binary of y.rb

Binary of z.rb

/a/b/y.rb

/a/b/x.rb

/a/c/z.rb

flatfile

Configuration
Yomikomu supports compactions
•Store Gzip compressed compiled binary
• fsgz, fs2gz, flatfilegz

Configuration
Yomikomu supports auto compilation
•YOMIKOMU_AUTO_COMPILE
• If required script is not compiled, compile it and

store to somewhere automatically
• Similar to Python and Rubinius
• You don’t need to use “kakidasu” command

Demonstration
(if I have time…)

Evaluation

Evaluation

•Measure loading time of same script 1,000 times
•Use remove_const to cleanup each loading
•Choose from lib/*.rb

Target script Lines Size (KB)

resolv.rb 2,855 73
csv.rb 2,346 83
fileutils.rb 1,761 48
forwardable.rb 290 8

Evaluation
Loading time (x1,000)

Normal (sec) Load (sec) Lazy load (sec)

resolve.rb 13.19 3.92 (x3.36) 2.42 (x5.45)

csv.rb 7.88 4.19 (x1.88) 2.85 (x2.76)

fileutils.rb 8.55 4.64 (x1.84) 3.61 (x2.37)

forwardable.rb 0.48 0.18 (x2.67) 0.12 (x4.00)

 5 times faster on resolv.rb seems good
 Nobody load resolv.rb 1,000 times

Evaluation
Compiled binary size

Target script Lines Script size (KB) Binary size (KB)

resolv.rb 2,855 73 337 (x4.6)
csv.rb 2,346 83 170 (x2.0)
fileutils.rb 1,761 48 202 (x4.2)
forwardable.rb 290 8 14 (x1.7)

Evaluation
Rails launch time
•Loading time of Redmine 3.2.1 (rails app)
•$ bundle exec rails r “p:success”
• YOMIKOMU_STORAGE=fs

Execution time Normal (sec) Use Yomikomu
(sec)

Use Yomikomu w/
lazy loading (sec)

w/o bundle 2.65 2.22
(x1.19)

2.03
(x1.31)

w/ bundle 2.94 2.45
(x1.20)

2.24
(x1.31)

Evaluation
Compare only loading time

Loading time Normal: load file + parse
+ compile (sec)

Use Yomikomu:
deserialize (sec)

Use Yomikomu w/
lazy loading (sec) (*)

w/o
bundle

0.87
(33% of exec)

0.43
(x2.02)

0.23
(x3.78)

•Check the (load file + parse + compile) time and
corresponding (load file + deserializing) time
• YOMIKOMU_STORAGE=fs

(*) Does not contain actual lazy loading time

Evaluation
Loading (parse & compile) overhead

0

0.5

1

1.5

2

2.5

3

load time exec time
normal yomikomu yomikomu+lazy

 4 times faster!  No drastic reduction

Evaluation
Rails launch time w/ flatfile
•Loading time of Redmine 3.2.1 (rails app)
•$ bundle exec rails r “p:success”
• YOMIKOMU_STORAGE=flatfile

Execution time Normal (sec) Use Yomikomu
(sec)

Use Yomikomu w/
lazy loading (sec)

w/o bundle 2.65 2.11
(x1.26)

2.05
(x1.29)

w/ bundle 2.94 2.46
(x1.20)

2.45
(x1.20)

Evaluation
Compare loading time w/ flatfile

Loading time Normal: parse +
compile (sec)

Use Yomikomu:
deserialize (sec)

Use Yomikomu w/
lazy loading (sec) (*)

w/o bundle 0.87 0.43
(x2.02)

0.22
(x3.95)

•Check the (load file + parse + compile) time and
corresponding (load file + deserializing) time
• YOMIKOMU_STORAGE=flatfile

(*) Does not contain actual lazy loading time

Future work

•Reduce memory consumption by memory
sharing with mmap (and so on)

•Reduce binary size with some techniques
• Smart serialization technique
•Compaction technique

•And more…

Today’s talk was about:

•New feature of Ruby 2.3

“Pre-compilation primitives”

•Yomikomu gem: what is and how to use it.

•Evaluation results includes redmine boot time

Myth

“If we have an AOT
compiler, the boot time

issue will be solved”

Fact

“The world is
not so easy”

Message

“Please enjoy

making your own
Yomikomu utility”

Thank you for your attention

Koichi Sasada
<ko1@heroku.com>

