Building
the Ruby Interpreter

What is easy and what is difficult?

Koichi Sasada
kol@heroku.net

1! heroku

2014

Very important year for me

10th
Anniversary

10th
Anniversary

YARV development (2004/01-)
Ruby no Kai (2004/07-)
Rubyist Magazine (2004/09-)

10th

Anniversary

Continuous efforts
on development of Ruby

Today’s talk

Ruby development

Easy part

RIMNFEELZD ?

Difficult part

RIMEELLND ?

Who am |?
A Programmer

* CRuby developer (a committer)

* Interpreter core such as VM, GC, and so on
* Join 2007-

e Member of Heroku Matz team

* Full time CRuby developer with Matz and Nobu
* Join at 2012-

* One of the directors of Ruby Association
* Join at 2013

Who am |?
Contributions

* YARV: Yet Another RubyVM (Ruby 1.9)

* Native Thread strategy (Ruby 1.9)

* Fiber (Ruby 1.9)

* Flonum (on 64bit CPU) (Ruby 2.0)

* New method cache (Ruby 2.0)

* RGenGC: Restricted Generational GC (Ruby 2.1)
e RincGC: Restricted incremental GC (Ruby 2.27)
* Research projects

* Community activities

Contributions
YARV: Yet Another RubyVM (1.9-)

i gigantum umeris insidentes
Standing on the shoulders of giants

SO many gems

such as Rails, pry, thin, ... and so on.
RubyGems/Bundler

Ruby interpreter

Contributions
YARV: Yet Another RubyVM (1.9-)

Bundled Gem
Libraries Libraries

Embedded
classes and methods
(Array, String, ...)

Object
management(GC)

Threading Evaluator

Ruby A
Bytecode
= Ruby Interpreter

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Contributions
YARV: Yet Another RubyVM (1.9-)

 Stack based virtual machine
* Ruby specific bytecode
* Compiler Ruby script to bytecode sequence
e Bytecode interpreter

* Develop at 2004/01/01

* | was 1t year doctor course student and had plenty time

Contribution
Native thread strategy (1.9-)

* Native (OS) threads for each Ruby threads with GVL
* Fast context switch, easy to manage threads

/ Thread 1 Thread 1 \

CPU 1 | OS Thread 1
Thread 2

OS Thread 2

CPU2 T e

Contribution
Fiber (1.9-)

* Abstraction objects of execution contexts
* Fiber is from Windows API
e Cooperative thread
e Coroutine (or Semi-Coroutine)

 Fast fiber context switch with non-portable methods

Fiberl Fiberl

yeild

Fiber2 Fiber2

resume

time

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Contributions
New method cache (2.0-)

 Store checking results into method cache
* Eliminate method frame building

1. Check caller’s arguments
2. Search method "body’ ‘selector’ from “klass

3. Dispatch method with "body’

1. Check visibility and arity
1. Cache result into inline method cache

2. Push new control frame

)

Second time

3. Build ‘local environment’
4. Initialize local variables by "nil’

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Contributions
Flonum (on 64bit CPU) (2.0-)

e Embedded “double” into VALUE like Fixnum

 About 2 times faster
IEEE754 double

b61

b62 b60-b52

Only “rotate” and “mask”

b60-b52

Flonum representation bits (2 bits) T
#define FLONUM_P(v) ((v&3) == 2)

Y +0.0 is special case (0x02)
Building the Ruby Interpreter -What is easy and what is difficult?-,

Koichi Sasada, RubyKaigi2014

Contributions
RGenGC: Generational GC for Ruby (2.1

* Introduce RGenGC by inventing “WB-unprotected”
objects technique and reduce marking time dramatically

* Incremental GC by same technique (for Ruby 2.2)
* See Rubyist Magazine vol. 0048 or attend RubyConf2014

< 15
)
23 10
& g About x15 speedup!
S 5
565 °
)
3 Total mark time (ms) Total sweep time (sec)

B w/o RGenGC M RGenGC
* Disabled lazy sweep to measure correctly.

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Contributions
Research projects

* Performance
* Ruby to C compiler (3 versions)
* Ruby to C# compiler
e Ruby to X10 compiler
* Regexp compiler
* Mix Ruby and C program
 Memory management with mmap

 Parallelization
* Parallel threads CRuby
« MVM: Multiple virtual machines
* Inter-processes shared objects mechanism

* Profilers
 Memory profiler
* High-speed profiler

 And others....

Contributions
Community activities

* Nihon Ruby no Kai
* Director (2004-2011)
* Rubyist Magazine (2004-)
* RubyKaigi (2006-2011)
* Ruby Association
* Director (2012-)

 and other activities

e see http://www.atdot.net/~ko1l/activities/ for other
activities

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

http://www.atdot.net/~ko1/activities/

Contributions
Community activities

* Conference in the world
e 2014/03 RubyConf Philippines 2014, Manila, Philippines
e 2014/04 RubyConf Taiwan 2014, Taipei, Taiwan
e 2014/05 Ogasawara, Tokyo, Japan (Honeymoon)
e 2014/06 RedDotRubyConf 2014, Singapore
* 2014/07 Deccan RubyConf 2014, Pune, India
e 2014/08 RubyConf Brasil 2014, Sao Paulo, Brazil
» 2014/09 RubyKaigi 2014 (NOW)
* 2014/10 ?? (No plan, please invite me)
e 2014/11 RubyConf2014, San Diego, US

£
g

R

10’

http://wiflickr.com/photo/okyoey/842265722

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Today’s talk
Ruby development

Easy part

I NHELGD ?

Difficult part

AIMEELLND ?

Mission of
Ruby interpreter developers

Improve the

Quality

of the Ruby interpreter

Quality

* Reliability / Availability
* Run Ruby program correctly

* No bugs!!

* High performance
* Nobody blames speed-up

 Llow machine resources
* Low memory, low energy, ...

* Good compatibility
* Ruby level and C-API level

* Extensibility

* Productivity on Ruby interpreter development

Trade-off

* Many trade-off, for example:
* Performance <-> Reliability
* Performance <-> Low resource
* Performance <-> Compatibility
* Performance <-> Extensibility

B is good

A is good

Trade-off

* We engineers/programmers need to:
* Know trade-off
* Consider trade-off
* Overcome trade-off

B is good

N

A is good

Overcoming “trade-off” technology

e Object-oriented scripting language Ruby
* Improve “Productivity” by overcoming trade-off
between “Language power” and “Easy-to-read/write”
* Performance improvements of Ruby interpreter

* Improve “Performance” by overcoming trade-off
between “Productivity” and “Performance”

Ruby’s Performance

Serial execution performance
Parallel execution performance
GC performance

Serial execution

e [EASY]
* Introduce virtual machine (done)
* Introduce (simple) JIT (AOT) compilation

* [Difficult]
* Keep productivity, reliability, compatibility
* Improve performance with aggressive
optimization
* Interoperability with C codes

Serial execution
Designing simple VM

* Add bytecode incrementally
* Increase support ruby features
* For YARV, ruby has an answer set! (test case)

* VM is simple and easy software
* Loop fetch and execute instructions

* Details are not so easy

* Implement block data structure is hell
e But time can solve (maybe...)

Serial execution
Keeping productivity

* (1) VM code needs many similar codes

— Solution: VM code generator
* Generate VM related codes from simple definitions
* No need to write complicated codes

* (2) Manipulate native code for more optimizations
— Solution: similar code generation technique (planning)

Serial execution
Aggressive optimization

* For meaningful speed, aggressive optimizations are needed
* Method/block inlining

Constant folding

Partial redundancy elimination (PRE)

Lambda lifting

... (many well-known traditional optimizations)

* Ruby is highly dynamically programming language
* Method redefinition
* Accessing local variables via “eva

* Key technique is [DE-OPTIMIZATION]

* Revert aggressive optimizations
 Itis difficult to revert from mangled states to plain states dynamically

|II

method

Serial execution
Interoperability with C codes

* C code is low-level, faster than Ruby’s code

* However, C code doesn’t have internal details
which aggressive optimization requires

 Most of Java class libraries are written in Java
program — Rubinius way (Ruby in Ruby)

* |deas
* (1) Rewrite with ruby
* (2) Write annotations to C code

* (3) Analyze C code with LLVM infrastructure and so on
* (4) Mix C code with Ruby code

Performance

Serial execution performance
Parallel execution performance
GC performance

Parallel execution

e [EASY]
* Providing parallel threads

* [Difficult]

* Provide good programming experience

* Programming model

* Debugger
* Good serial performance
* Need synchronization everywhere
* Keep code quality, reliability, compatibility
* Interpreter should be robust
* Thread programming is needed!

Parallel execution
Provide good programing experience

* “Why Threads Are A Bad Idea (for most purposes)”
* Quoted from John Ousterhout, 1995

What's Wrong With Threads?

wizards

)casual all programmers -
“ Visual Basic programmers >

«— (C programmers —*

«— (C++ programmers —
o+
Threads programmers

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Parallel execution
Provide good programing experience

* Shared everything and need correct synchronizations
e Typical bugs

* Data race
e Atomicity violation
* Order violation
* Non-deterministic nature
* Bugs are not reproducible
e Terrible experiences make Ruby programming unhappy

* | hope Ruby programming is happy experience

Parallel execution
Provide good programing experience

* Educate programmers
* Provide good concurrent programming models
* Provide smart debugging tools

Parallel execution
Concurrent programming model

* Approaches of other languages

e Data models
e Concurrent data: Java (java.util.concurrent)
* Immutable (functional) data: Functional languages
e STM: Clojure
* Type system: D, Haskell

Functional
. Threads languages
* Execution models: ; o
anger , Safe
* Actor: Erlang, Scala Freedom Restricted

* CSP: Go-lang

e “Can write safe code” vs. “Must write safe code”

Parallel execution
Concurrent programming model

* Trade-off: Performance, Flexibility <-> Reliability
e “Parallel threads” (shared everything) is very primitive

* Enable to write best-speed programs
 Difficult to debug because of non-deterministic nature

e Similar trade-off: free() vs. GC
* Liberty vs. Restriction
 Manual free() is high-performance
* However, Ruby has good enough performance

Parallel execution
Concurrent programming model

* |[deas
* Better inter-process communication
* MVM: Multiple virtual machines

e Spawn full set Ruby virtual machine
* Too big and performance neck

* Smaller isolated ruby
e Subset of Ruby

* mruby?

* Introduce “owner threads” for each objects
e Detect “owner thread violation” dynamically
* Pre-locked objects

Parallel execution
Make program deterministic

* Non-deterministic behavior kills programmers

* Many research on thread debugging tools
* Detecting inter-thread conflicts

* Change OS scheduler to make programs
deterministic

Performance

Serial execution performance
Parallel execution performance
GC performance

GC Performance

* [Easy]
* Write GC algorithms

e [Difficult]
* Keep reliability
* Non-deterministic behavior
* Keeping compatibility
e Lack of write-barriers

e Conservative algorithms
* Mostly copying/compaction GC

GC Performance
GC algorithm and implementation

e GC algorithms are simple, only a hundred of
lines
* Mark & Sweep
* Copy, Compaction
* Reference count

* Other than GC algorithm is very difficult

e GC algorithm need assumptions, and need to
change all of Interpreter code

* Only one bug causes critical bugs
* Also we need to care compatibility

GC Performance
Example: Write barrier

* Write barrier technique is required for many
GC algorithms, but it is difficult to insert WBs
correctly because of compatibility issue

* Solution: Invent new GC algorithm without
enough WBs

GC Performance
Reliability

* Non-deterministic behavior
* GC bugs appear in unexpected place

* Solution: Debugging feature

e GC.stress: invoke GC many times forcibly

* Check assertions
* List up all assertions
e Check assertions for debug

GC Performance
Example: detect write barrier miss

* Assertion (RGenGC): . Remember
Old objects should not Root objects et pser
point new objects
(without remember set)

* Traverse all objects and
build objects relation
graph

* Check assertion

* GC.verify_internal_consistency
method

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Measurement

* [EASY]

* Measure execution time

* [Difficult]
* Making periodically observing environment
* What application should we measure?
* What measurement should we measure by?

Measurement
Periodical observing environment

* To measure correct benchmark results,
physical environments are required

* We have a small rack space, cooperation by Prof.
Sugaya, Shibaura Institute of Technology

* Only two machines... ®

* |deal resources

* Multiple OSs (linux, MacOSX, Windows, ...),
multiple architectures (Intel, ARM, ...)

* Multiple nodes for periodical benchmarking

Measurement
Applications

* What applications should we measure?
* Micro benchmarks
* Rails application — discourse benchmark

Measurement
Index

 What should we use
measurement?

* Execution time
 Which execution time?
* Include launch time?

* Memory usage
* Peak value?
* Average/Median values?

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Development community

* [EASY]

* Become a Ruby committer

* [Difficult]
* Become a Ruby developer
* Keep motivation and continuous development
* Increase Ruby developers

Community
Become a Ruby developer

* Ruby Hacking guide
* Published in Japanese
* Translated into English

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Community
Become a Ruby developer

* Ruby Under a Microscope
* Published in English RUby Under a /)

* (Translating into Japanese) Micmscope //'}./
An lllustrated Guide /F\% // b ¢

to Ruby Internals
/ ,,” /))

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Community
Become a Ruby developer

* 2014/09/20 15:30- @ Hall B

.-+ ——== DETAIL ——--

[JA] WALKING AROUND RUBY FOREST MORE DEEPLY

For non C-programmer, it is difficult to take his/her first step toward reading implementation of Ruby interpreter.

I'm now trying to read it. At the last the last Rubyconf.tw 2014, I talked about ""how to take the first step™”, titled ""walking-around-
the-ruby-forest™: introduced the books for reference, glanced Ruby source files, and showed basic ruby data-structure.
https://speakerdeck.com/yotii23/walking-around-the-ruby-forest.

In RubyKaigi 2014, I'll talk about one more step, more detailed Ruby Implementation.

YUKI TORII

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Community
Continuous development

* Survey new technologies
* Blogs
* Meet-up
* Academic papers

e Consideration, Discussion
* Thinking on the desk
e Chatting on SNS

* Developer’s meeting
* Talking at conferences

* Implementation and Evaluation

... and overcome trade-off

Message

We are facing with large
blue ocean yet.

Join us for your profession
and fun!

Today’s talk

Ruby development

Easy part

RIMNFEELZD ?

Difficult part

RIMEELLND ?

Thank you for your attention

Koichi Sasada

<kol@heroku.com>

Hlheroku

