
Building

the Ruby Interpreter

What is easy and what is difficult?

Koichi Sasada
ko1@heroku.net

2014
Very important year for me

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

10th

Anniversary

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

10th

Anniversary
YARV development (2004/01-)

Ruby no Kai (2004/07-)

Rubyist Magazine (2004/09-)

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

10th

Anniversary
Continuous efforts

on development of Ruby
Building the Ruby Interpreter -What is easy and what is difficult?-,

Koichi Sasada, RubyKaigi2014

Today’s talk

Ruby development

Easy part
何が簡単なの？

Difficult part
何が難しいの？

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Who am I?
A Programmer

• CRuby developer (a committer)
• Interpreter core such as VM, GC, and so on

• Join 2007-

• Member of Heroku Matz team
• Full time CRuby developer with Matz and Nobu

• Join at 2012-

• One of the directors of Ruby Association
• Join at 2013

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Who am I?
Contributions

• YARV: Yet Another RubyVM (Ruby 1.9)

• Native Thread strategy (Ruby 1.9)

• Fiber (Ruby 1.9)

• Flonum (on 64bit CPU) (Ruby 2.0)

• New method cache (Ruby 2.0)

• RGenGC: Restricted Generational GC (Ruby 2.1)

• RincGC: Restricted incremental GC (Ruby 2.2?)

• Research projects

• Community activities

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Contributions
YARV: Yet Another RubyVM (1.9-)

Ruby interpreter

Ruby (Rails) app

RubyGems/Bundler

So many gems
such as Rails, pry, thin, … and so on.

i gigantum umeris insidentes
Standing on the shoulders of giants

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Contributions
YARV: Yet Another RubyVM (1.9-)

Ruby Interpreter

Ruby
script

Parse

Compile

Ruby
Bytecode

Object
management(GC)

Threading

Embedded
classes and methods

(Array, String, …)

Bundled
Libraries

Evaluator

Gem
Libraries

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Contributions
YARV: Yet Another RubyVM (1.9-)
• Stack based virtual machine

• Ruby specific bytecode

• Compiler Ruby script to bytecode sequence

• Bytecode interpreter

• Develop at 2004/01/01
• I was 1st year doctor course student and had plenty time

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Contribution
Native thread strategy (1.9-)
• Native (OS) threads for each Ruby threads with GVL

• Fast context switch, easy to manage threads

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Thread 1

Thread 2

Thread 1

CPU 1

CPU 2
IDLE

OS Thread 1

OS Thread 2

Lock
Lock

Contribution
Fiber (1.9-)
• Abstraction objects of execution contexts

• Fiber is from Windows API

• Cooperative thread

• Coroutine (or Semi-Coroutine)

• Fast fiber context switch with non-portable methods

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Fiber1

Fiber2

Fiber3

Fiber2

Fiber1

resume

resume yield

yeild

time

Contributions
New method cache (2.0-)
• Store checking results into method cache

• Eliminate method frame building

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

1. Check caller’s arguments

2. Search method `body’ `selector’ from `klass’

3. Dispatch method with `body’
1. Check visibility and arity

1. Cache result into inline method cache

2. Push new control frame

3. Build `local environment’

4. Initialize local variables by `nil’

Se
co

n
d

 t
im

e

Fi
rs

t
ti

m
e

Contributions
Flonum (on 64bit CPU) (2.0-)
• Embedded “double” into VALUE like Fixnum

• About 2 times faster

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

b63 b60-b52 b51-b0
b61
b62

b63b60-b52 b51-b0 1 0

Only “rotate” and “mask”

IEEE754 double

Ruby’s Flonum

Flonum representation bits (2 bits)
#define FLONUM_P(v) ((v&3) == 2)

☆ +0.0 is special case (0x02)

Contributions
RGenGC: Generational GC for Ruby (2.1-)

• Introduce RGenGC by inventing “WB-unprotected”
objects technique and reduce marking time dramatically

• Incremental GC by same technique (for Ruby 2.2)
• See Rubyist Magazine vol. 0048 or attend RubyConf2014

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

0

5

10

15

Total mark time (ms) Total sweep time (sec)

A
cc

u
m

u
la

te
d

ex

ec
u

ti
o

n
 t

im
e

(s
ec

)

w/o RGenGC RGenGC

About x15 speedup!

* Disabled lazy sweep to measure correctly.

Contributions
Research projects
• Performance

• Ruby to C compiler (3 versions)
• Ruby to C# compiler
• Ruby to X10 compiler
• Regexp compiler
• Mix Ruby and C program
• Memory management with mmap

• Parallelization
• Parallel threads CRuby
• MVM: Multiple virtual machines
• Inter-processes shared objects mechanism

• Profilers
• Memory profiler
• High-speed profiler

• And others….
Building the Ruby Interpreter -What is easy and what is difficult?-,

Koichi Sasada, RubyKaigi2014

Contributions
Community activities
• Nihon Ruby no Kai

• Director (2004-2011)

• Rubyist Magazine (2004-)

• RubyKaigi (2006-2011)

• Ruby Association
• Director (2012-)

• and other activities
• see http://www.atdot.net/~ko1/activities/ for other

activities

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

http://www.atdot.net/~ko1/activities/

Contributions
Community activities
• Conference in the world

• 2014/03 RubyConf Philippines 2014, Manila, Philippines

• 2014/04 RubyConf Taiwan 2014, Taipei, Taiwan

• 2014/05 Ogasawara, Tokyo, Japan (Honeymoon)

• 2014/06 RedDotRubyConf 2014, Singapore

• 2014/07 Deccan RubyConf 2014, Pune, India

• 2014/08 RubyConf Brasil 2014, São Paulo, Brazil

• 2014/09 RubyKaigi 2014 (NOW)

• 2014/10 ?? (No plan, please invite me)

• 2014/11 RubyConf2014, San Diego, US

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

http://www.flickr.com/photos/donkeyhotey/8422065722

Today’s talk

Ruby development

Easy part
何が簡単なの？

Difficult part
何が難しいの？

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Mission of
Ruby interpreter developers

Improve the

Quality
of the Ruby interpreter

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Quality
• Reliability / Availability

• Run Ruby program correctly

• No bugs!!

• High performance
• Nobody blames speed-up

• Low machine resources
• Low memory, low energy, …

• Good compatibility
• Ruby level and C-API level

• Extensibility
• Productivity on Ruby interpreter development

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Trade-off

• Many trade-off, for example:
• Performance <-> Reliability

• Performance <-> Low resource

• Performance <-> Compatibility

• Performance <-> Extensibility

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

A is good

B
is

 g
o

o
d

Trade-off

•We engineers/programmers need to:
• Know trade-off
• Consider trade-off
• Overcome trade-off

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

A is good

B
is

 g
o

o
d

Overcoming “trade-off” technology

• Object-oriented scripting language Ruby
• Improve “Productivity” by overcoming trade-off

between “Language power” and “Easy-to-read/write”

• Performance improvements of Ruby interpreter
• Improve “Performance” by overcoming trade-off

between “Productivity” and “Performance”

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Ruby’s Performance
Serial execution performance

Parallel execution performance

GC performance

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Serial execution

• [EASY]
• Introduce virtual machine (done)

• Introduce (simple) JIT (AOT) compilation

• [Difficult]
• Keep productivity, reliability, compatibility

• Improve performance with aggressive
optimization

• Interoperability with C codes

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Serial execution
Designing simple VM

• Add bytecode incrementally
• Increase support ruby features

• For YARV, ruby has an answer set! (test case)

• VM is simple and easy software
• Loop fetch and execute instructions

• Details are not so easy
• Implement block data structure is hell

• But time can solve (maybe…)

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Serial execution
Keeping productivity

• (1) VM code needs many similar codes

→ Solution: VM code generator
• Generate VM related codes from simple definitions

• No need to write complicated codes

• (2) Manipulate native code for more optimizations

→ Solution: similar code generation technique (planning)

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Serial execution
Aggressive optimization
• For meaningful speed, aggressive optimizations are needed

• Method/block inlining

• Constant folding

• Partial redundancy elimination (PRE)

• Lambda lifting

• … (many well-known traditional optimizations)

• Ruby is highly dynamically programming language
• Method redefinition

• Accessing local variables via “eval” method

• Key technique is [DE-OPTIMIZATION]
• Revert aggressive optimizations

• It is difficult to revert from mangled states to plain states dynamically

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Serial execution
Interoperability with C codes
• C code is low-level, faster than Ruby’s code

• However, C code doesn’t have internal details
which aggressive optimization requires

• Most of Java class libraries are written in Java
program → Rubinius way (Ruby in Ruby)

• Ideas
• (1) Rewrite with ruby

• (2) Write annotations to C code

• (3) Analyze C code with LLVM infrastructure and so on

• (4) Mix C code with Ruby code

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Performance
Serial execution performance

Parallel execution performance

GC performance

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Parallel execution

• [EASY]
• Providing parallel threads

• [Difficult]

• Provide good programming experience

• Programming model

• Debugger

• Good serial performance
• Need synchronization everywhere

• Keep code quality, reliability, compatibility
• Interpreter should be robust

• Thread programming is needed!

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Parallel execution
Provide good programing experience

• “Why Threads Are A Bad Idea (for most purposes)”
• Quoted from John Ousterhout, 1995

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Parallel execution
Provide good programing experience

• Shared everything and need correct synchronizations

• Typical bugs
• Data race

• Atomicity violation

• Order violation

• Non-deterministic nature

• Bugs are not reproducible

• Terrible experiences make Ruby programming unhappy

• I hope Ruby programming is happy experience

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Parallel execution
Provide good programing experience

• Educate programmers

• Provide good concurrent programming models

• Provide smart debugging tools

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Parallel execution
Concurrent programming model
• Approaches of other languages

• Data models
• Concurrent data: Java (java.util.concurrent)

• Immutable (functional) data: Functional languages

• STM: Clojure

• Type system: D, Haskell

• Execution models:
• Actor: Erlang, Scala

• CSP: Go-lang

• “Can write safe code” vs. “Must write safe code”

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Danger
Freedom

Safe
Restricted

Threads Functional
languages

Parallel execution
Concurrent programming model
• Trade-off: Performance, Flexibility <-> Reliability

• “Parallel threads” (shared everything) is very primitive

• Enable to write best-speed programs

• Difficult to debug because of non-deterministic nature

• Similar trade-off: free() vs. GC
• Liberty vs. Restriction

• Manual free() is high-performance

• However, Ruby has good enough performance

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Parallel execution
Concurrent programming model

• Ideas
• Better inter-process communication

• MVM: Multiple virtual machines
• Spawn full set Ruby virtual machine

• Too big and performance neck

• Smaller isolated ruby
• Subset of Ruby

• mruby?

• Introduce “owner threads” for each objects
• Detect “owner thread violation” dynamically

• Pre-locked objects
Building the Ruby Interpreter -What is easy and what is difficult?-,

Koichi Sasada, RubyKaigi2014

Parallel execution
Make program deterministic

• Non-deterministic behavior kills programmers

• Many research on thread debugging tools
• Detecting inter-thread conflicts

• Change OS scheduler to make programs
deterministic

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Performance
Serial execution performance

Parallel execution performance

GC performance

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

GC Performance

• [Easy]
• Write GC algorithms

• [Difficult]
• Keep reliability

• Non-deterministic behavior

• Keeping compatibility
• Lack of write-barriers

• Conservative algorithms
• Mostly copying/compaction GC

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

GC Performance
GC algorithm and implementation
• GC algorithms are simple, only a hundred of

lines
• Mark & Sweep
• Copy, Compaction
• Reference count

• Other than GC algorithm is very difficult
• GC algorithm need assumptions, and need to

change all of Interpreter code
• Only one bug causes critical bugs
• Also we need to care compatibility

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

GC Performance
Example: Write barrier

• Write barrier technique is required for many
GC algorithms, but it is difficult to insert WBs
correctly because of compatibility issue

• Solution: Invent new GC algorithm without
enough WBs

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

GC Performance
Reliability

•Non-deterministic behavior
• GC bugs appear in unexpected place

• Solution: Debugging feature
• GC.stress: invoke GC many times forcibly

• Check assertions
• List up all assertions

• Check assertions for debug

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

GC Performance
Example: detect write barrier miss

• Assertion (RGenGC):
Old objects should not
point new objects
(without remember set)

• Traverse all objects and
build objects relation
graph

• Check assertion
• GC.verify_internal_consistency

method

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Root objects

new

old

new

oldold

old

Remember
set (RSet)

new

BUG!!

WB
u

new

Measurement

• [EASY]
• Measure execution time

• [Difficult]
• Making periodically observing environment

• What application should we measure?

• What measurement should we measure by?

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Measurement
Periodical observing environment

• To measure correct benchmark results,
physical environments are required
• We have a small rack space, cooperation by Prof.

Sugaya, Shibaura Institute of Technology

• Only two machines… 

• Ideal resources
• Multiple OSs (linux, MacOSX, Windows, …),

multiple architectures (Intel, ARM, …)

• Multiple nodes for periodical benchmarking

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Measurement
Applications
• What applications should we measure?

• Micro benchmarks

• Rails application – discourse benchmark

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Measurement
Index
• What should we use

measurement?

• Execution time
• Which execution time?

• Include launch time?

• Memory usage
• Peak value?

• Average/Median values?

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Development community

• [EASY]
• Become a Ruby committer

• [Difficult]
• Become a Ruby developer

• Keep motivation and continuous development

• Increase Ruby developers

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Community
Become a Ruby developer
• Ruby Hacking guide

• Published in Japanese

• Translated into English

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Community
Become a Ruby developer
• Ruby Under a Microscope

• Published in English

• (Translating into Japanese)

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Community
Become a Ruby developer
• 2014/09/20 15:30- @ Hall B

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Community
Continuous development
• Survey new technologies

• Blogs
• Meet-up
• Academic papers

• Consideration, Discussion
• Thinking on the desk
• Chatting on SNS
• Developer’s meeting
• Talking at conferences

• Implementation and Evaluation

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

… and overcome trade-off

Message

We are facing with large
blue ocean yet.

Join us for your profession
and fun!

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Today’s talk

Ruby development

Easy part
何が簡単なの？

Difficult part
何が難しいの？

Building the Ruby Interpreter -What is easy and what is difficult?-,
Koichi Sasada, RubyKaigi2014

Thank you for your attention

Koichi Sasada
<ko1@heroku.com>

