YARV
Progress Report

RubyConf 2005 Oct. 14

SASADA Koichi

Tokyo University of Agriculture and Technology
Nihon Ruby no Kai

Ko1@atdot.net

e

Agenda

™

Self Introduction and Japanese Activities
Overview of YARV
Goal of YARV

Current YARV Status

YARYV Design, Optimization Review
Evaluation

Conclusion

4 N

Self Introduction

"SASADA" the family name
11 . =y = . (11 7 NOt a
Koichi” is given name — “ko1

A Student for Ph.D. 2" grade /, Son-shi

Systems Software for Multithreaded Arch.
* SMT / CMP or other technologies
® i.e.: Hyper threading (Intel), CMT (Sun), Power (IBM)
¢ OS, Library, Compiler and Interpreter
* YARYV is my first step for Parallel interpreter (?)
\ Computer Architecture for Next Generation /
At Public Position
3

/ /VVeII Known as\\

Self Introduction (c| Takahashi
Method

Nihon Ruby no Kai ~ g

Organized by Mr. Takahashi (maki)

Rubyist Magazine (http://jp.rubyst.net/magazine)
vol. 10 at 10t Oct. 2005
1st anniversary at 6" Sep. 2005 (vol. 9)

Ruby-dev summary
English Diary some days

\ But retired... /

_ YARV

e

Overview: Background

™

Ruby is used world-wide,

mpmempthe Most Comfortable
Programming Language

Ruby is slow, because interpreter
doesn’t use Virtual Machine techniqu

— We need RubyVM!
N

eS

%

6

e

Overview: YARV

YARV: Yet Another RubyVM
Started development on 15t Jan. 2004

* At that time, there were some VMs for Ruby

Simple Stack Virtual Machine
http://www.atdot.net/yarv/
Ruby’s license, of course

e

Overview:
FAQ (review of last year FAQ)

Q: How does “YARV” pronounce?
A: You can pronounce “YARV” what you like.
Q: Should | remember the name of “YARV"?

A: No. If YARV succeeds, it renames to Rite, if
doesn’t, no one remember YARV.

About YARYV, name is NOT important
Q: YARV will be Ruby 2.07?
A: | hope so. But Matz will decide it.

/

/” Overview: I
YARYV System

Ruby Program

Compiler AOT Compiler

RV Instructio @
Seque
JIT Compiler

C Compiler
;
\ Virtual Machine Extension Lib./

9

/ Overview:

Current Interpreter

N

Ruby Program

a=b+c

directly

Parse

Current Interpreter
traverses AST

Abstract Syntax Tree

Method
Dispatch(:+)

/ Overview \
YARYV - Stack Machine

Ruby Program

a=b+c

Compile b
v
YARYV Instructions

b+cC

__getlocal b
_getlocal c
" send +

a

\\I setlocal

YARYV Stack

] /

11

e

™

The Goal
of

_ YARV

e

The Goal of YARV

™

o

YARV: Yet Another RubyVM

— The RubyVM
To be the Ruby 2.0 VM Rite

Fastest Ruby Interpreter

Easy to beat current fastest VM

%

13

e

The Goal of YARYV (cont.)

Support all Ruby features

Include Ruby 2.0 new syntaxes

Native Thread Support
Concurrent execution (Giant VM lock)
Parallel execution on parallel machine

Multi-VM Instance

Same as MVM in Java

Salnjeal MaN

14

e

Goal: Ruby 2.0 syntax

™

_

Matz will decide it ©

ql...] ... Y =">. 1.)
Multiple-values

Same as Array? Or first class
multiple-values support?

Selector-namespace”?

Really?

/

15

/” Goal: I

Native Thread Support

Three different thread models
Model 1: User-level thread (Green Thread)

Same as current Ruby interpreter

Model 2: Native-thread with giant VM lock

Same as current Ruby interpreter
Easy to implement

Model 3: Native-thread with fine grain lock

Run ruby threads in parallel
\ For enterprise? /

16

e

™

Goal: Native Thread Support (cont.)

Current Ruby Interpreter

& Model 1
- Thread 1. Thread 2. Thread 1
CPU 1 — —— —
OS Thread 1
CPU2 .susssssssssssssssssssssmsssmssnns
IDLE
~ _

17

e

™

Goal: Native Thread Support (cont.)

Model 2:
Native thread with Giant VM Lock
/ Thread 1 Thread 1\

>
CPU 1 ios Thread 1
Thread 2 |

O
I
C

ﬁ

OS Thread 2

4 A

Goal: Native Thread Support (cont.)

Model 3:
Native thread with Fine Grain Lock

/G-oal: Native Thread Support\

Summary

Model 1 | Model 2 | Model 3

Scalability Bad | Bad”? | Best

Lockoverhead | No | Some | High

Impl. Difficulty | Norm. | Easy | Hard

—

Portability | Good | Bad | Bad

 ——

20

/” Goal:

Multi-VM Instance

Current Ruby Process
un

Process

\

BN

_—

\

Ruby Interpreter (VM)

N

//

Process

Ruby Process with Multi-VM Instance
~RUb)

)

Lgby Interpreter (VM)

____—

21

4 N

Goal: Multi-VM Instance (cont.)

Current Ruby can hold only 1 interpreter
In 1 process
Interpreter structure causes this problem
Using many global variables

Multiple-VM instance
Running some VM in 1 process
It will help ruby embedded applications

*mod_ruby, efc

o /

22

/" Multi-VM Instance +
Thread Model 2

™

OS Th
Busy
Thread 1 on VM 2

\K 0S Th

Thread 1
" Thread1 |

r———
OS Thread 1
CPU 1 Thread 2 I

VM1
read 2

"'"ad/;kle

23

/ Review

Summary with MV

N

\

M1 M2 |M2+MV | M3

Scalability Bad | Bad? | Good |Best

Lock overhead| None | Some | Some | High
Impl. Difficulty | Norm. | Easy | Easy |Hard
Portability | Good | Bad | Bad | Bad

N

24

4 N

Goal: Load Map

All Ruby features support
Feb. 2006 ...7

Native Thread Support

Experimental: Dec. 2005
Complete: 20067?(model 2) 20077?(model 3)

Multi-VM Support
Experimental: Feb. 2006

\ Complete: 20067 /

25

Status
of
~ YARV »

4 N

Status: System

Ruby Program
Almost

Incomplete =¥

11 Compiler AOT Compiler
Almost _
YARYV Instructio Not yet @
JIT Compiler _
C Compiler

Almost
\.]l Virtual Machine Extension Lib./

27

/" Status: I
Supported Ruby Features

Almost all Ruby features
Not supported:

Few syntaxes ... {|*arg| ...}
Visibility
Safe level ($SAFE)

Some methods written in C for current Ruby
Implementation

Around Signal

C extension libraries
\ ® Because yarv can't run "mkmf.rb” /

28

4 N

Status: Versions

0.2: YARV as C Extension
Need a patch to Ruby interpreter

0.3 (2005-8): YARYV as Ruby Interpreter
Merged to Ruby source code (Ruby 1.9 HEAD)
Maintained on my Subversion repository

Latest version: 0.3.2
Native thread (pthread / win32) supports on model 2

o /

29

e

YARV 0.2.x

Ruby Interpreter

_Evaluator

Use as C Extension

-

\) YARV
Patched |
Compiler

o

Using C API

VM
Optimizer /

30

e

YARYV 0.3.x

™

YARV merged with Ruby Interpreter

/ Future Work \ YARV
Generational GC
Selector Namespace VM

\ .. Iy Optimizer

31

/” Status:
Compile & Disasm CGI

™

http://www.atdot.net/yc/

32

/ Status:
VM Design

S registers
PC: Program Counter
SP: Stack Pointer
CFP: Control Frame Pointer
LFP: Local Frame Pointer
DFP: Dynamic Frame Pointer

Some stack frame
Control stack and value stack

o

/

33

/ Status:
VM Design - Stack Frame

™

PC
SP
BP
ISEQ
Self
LFP
DFP

Ctrl
Frame

Ctrl
Frame

Ctrl
Frame

Stack
Args Args
Locals Locals
LFP.| Block | Prev
Ptr Env Ptr

Control Frame
Stack

Args
Locals

Prev
Env Ptr

DFP
Dl

SP

/

34

/” Status: I

VM Design - Closure

/ HEAP \

=

DFP Env l:’tr
\ LFP — Env.

-)

35

e

Status: D
VM Design - Exception

_

Call Graph of YARV ExecutioZ Search I
Exception
VM handler Func (setjmp) Table
VMCFIL:mc If not match,
unc '
VM handler Func(setjmp)\ ongime e
VM Func

C Func Raise with
longjmp /

36

/" Status: I

VM Generator (in Ruby)

M Instrunction
Description

AOT Compiler}' C Source

Dis-assembler
Assembler

Virtual Machine| | Documents

Compiler _Future work

\ (Optimizer) Verifier /

37

/ Status:
Optimization

Simple Stack Virtual Machine
Re-design Exception handling

Peep-hole optimization on compile time
| gave up static program analysis
Dynamicity is your friend, but my ENEMY

Direct Threaded code with GCC

_

38

4 N

Status: Optimization (cont.)

Specialized Instruction

l.e.) Ruby program “x+y” compiled to special instructip
instead of a method dispatch instruction

[/ Specialized “+” Instruction
l nstruction opt plus(x, y){
1f(x Is Fixnumé&& y 1s Fi xnum
| f (FI Xnum¥+ 1s not re-defined)

return x+y;
\ return Xx. +(y); /

39

e

Status: Optimization (cont.)

™

o

In-line Cache
In-line Method Cache
In-line Constant Value Cache

® Because Ruby’s “Constant Variable” is not Constant!

Embed values in an Instruction sequence

/

40

™

/Status: Optimization (cont.)
In-line Constant Value cache

Ruby Program getinlinecache
A::B::.C putnil

lcompile getconstant A
optimized

getconstant B
getconstant C
setinlinecache

putnil

getconstant A
getconstant B
\getconstant C Skip if value is cached!

4 N

Status: Optimization (cont.)

Unified Instruction

Operands Unification
® Insn_ Ax —Insn A x

Instructions Unification
®|nsn A, Insn B—Insn A B
Unified instructions are auto generated by
VM generator

| only decide which instructions should be
combined.

o /

42

™

Status: Optimization (cont.)

Stack Caching

2 registers, 5 states
putobject (put 1 values on stack)

* putobject_xx_ax Pop Sx;
*® putobject_ax_ab pop e~ *push
® putobject_bx_ba Sbx Sax
*® putobject_ab_ba - ush
* putobject_ba_ab push ¢ ush F POP
Sba —» Sab /
push

-

43

e

Status: Optimization (cont.)
Stack Caching

N

\:s.etlocal_ax_xx\

Ruby Program b+cC Reg A
vl =v2 +v3 b+c
— V2 Reg B
, v3 v3
getlocal xx_ax vZ
getlocal_ax_al’ Noneedto RV
send_ab_ax 4 5;ch the Stack ack
_

44

e

Status: Optimization (cont.)

o

JIT Compilation
| made easy one for x86, but...
Too hard to do alone. | retired.

AOT Compilation
YARYV bytecode — C Source
Easy to develop
Hard to support exception

45

e

Status: Demo

YARYV Building Demo?
YARYV Running Demo?

46

e

Status: Evaluation

™

DT
Sl:

Fast -

Base: only base VM

14—

=1— Max.times{}
¢ "4 Yield Block
g ° -
§ 7 is not fast

4

i

|
hnp_linlnr; Inq:l_lﬂ.hln-hnp

Specialized Instruction

=0

i+=1 while i<Max

[] Base

WoTc

doTcesl

[oTC+S1+0U

B oTCslvousu

[DTC+S1I+0U=IUHME

B CTCHS+ U s U+ M+ 50

OU: Operand Unification IMC: Inline Method Cache
C: Direct Threaded Code IU: Instruction Unification SC: Stack Caching

/

47

e

Status: Evaluation (cont.)

™

18

18
14 —
12

T

8 X20 Faster

e

10

4 -
2
i

Ackermann

o

Array

Fib

Matrix

Pentomino
Tak

willlam

|

Random

Sieve

/

48

4 N

Status: Evaluation (cont.)

— BN
No speed-up.

VM is not bottleneck.

| — _
~ Object]
| Bignum W __allocation
L

AV
Irl——nlrf‘ﬂlrr‘ﬂlrr—ll

CountWords l’jx\t:eptinn
Fac . . el
\[—/\ Build Exception /

Regexp
9P object 9

10

o kR B 3O o

4 N

Status: Evaluation (cont.)

Compare with other languages

40
Slow
35 -

g 30]

< 25

a [] Ped

= 20 I Python

= 15 [| Gauche

o B [] Ruby

w10 B YARV

L B
| - i - l

loop ackermann fib lak fact

/
\

50

4 N

Status: Awards

2004: Funded by IPA Exploratory Software
Development “Youth”

IPA: Information-technology Promotion Agency,
Japan

2005: Funded by IPA Exploratory Software
Development (continuance)

| can’t walk away from the development ®

\2004: Got Award as “Super Creator” from IPA

/

51

4 N

Conclusion

_ /

e

Conclusion

™

o

YARYV supports almost Ruby syntaxes
YARYV supports some Ruby libraries

But can’t build Extension Libraries
® Because YARYV can’t run “mkmf.rb”

YARYV 0.3.2 supports native thread

YARYV achieves significant speedup for
Ruby programs execution which have
VM bottleneck

This means that we can enjoy Symbol
Programming with Ruby

%

53

e

Conclusion: Future work

™

Support all Ruby features
At least, YARV must work with “mkmf.rb”

Support every Thread Model
Especially model 2 and 3

Support Multi-VM Instance

54

e

How Can You Help me

™

o

Any comments are welcome

Build reports, Bug reports, architecture reports, ...
yarv-devel Mailing List

English ML for YARV development

® Matz and other Japanese also join

YARVWiki
http://yarv.rubyforge.org/pukiwiki/pukiwiki.php

Give me a job (I'll finish my course 2 years later)

/

95

e

Special Thanks

Matz the architect of Ruby

IPA: Information-technology Promotion
Agency, Japan (my sponsor)

Gabriele Renzi, Ippei Tate

YARYV development ML subscribers

Yarv-dev (Japanese)
Yarv-devel (English)

All rubyists

56

e

Finish N
“YARV Progress Report”

o

Thank you for your attention.
Any Questions?

SASADA Koichi
ko1@atdot.net

/

S7

