
1

YARV
Yet Another RubyVM

SASADA Koichi
Tokyo University of Agriculture and Technology

Nihon Ruby no Kai

Ko1@atdot.net

RubyConf2004 Oct. 2

2

Ask Ko1
YARV

Yet Another RubyVM

SASADA Koichi
Tokyo University of Agriculture and Technology

Nihon Ruby no Kai

Ko1@atdot.net

RubyConf2004 Oct. 2

3

Ko1 に聞け
YARV

Yet Another RubyVM

ささだ　こういち
東京農工大学大学院

日本Rubyの会

Ko1@atdot.net

RubyConf2004 Oct. 2

4

Caution!

 I can’t use English well
• If I say strange English, you can see the slide page

• This slide checked by other guys 

• If you have any question, ask me with:
• Japanese (recommended)
• Ruby, C, Scheme, Java, …
• IRC (@freenode#rubyconf)
• Easy English (less than 10 words, only easy words)

5

Agenda

 From Japanese Rubyist
 About me
 About YARV

• Background
• Design overview
• Implementation
• Optimization
• Current status

6

Q. Who are you?
A. Self Introduction

 A Student for Ph.D. 1st degree
• Systems Software for Multithreaded Arch.

• SMT / CMP or other technologies
• i.e.: Hyper threading (Intel), CMT (Sun)
• OS, Library, Compiler and Interpreter
• YARV is my first step for Parallel interpreter (?)

• Computer Architecture for Next Generation

At Public Position

7

A. Self Introduction (cont.)

 Nihon Ruby no Kai
• Rubyist community in Japan founded on 8th Aug.
• Organized by Mr. Takahashi (maki)

 Rubyist Magazine (10th Sep.)
• http://jp.rubyst.net/magazine

 Ruby-dev summary
 Favorite method

• __send__
• Recently, Japanese rubyist must say so

8

A. Self Introduction (cont.)

 Ko1?
• “Koichi” → 「こういち」 → 「耕一」

• 「一」 means “one” in Japanese
 Works (part time job)

• Kahua: Application Server framework in Scheme
• Coins: a Compiler Infrastructure

• A compiler framework languages in Java supporting
various language

• I don’t like Java language. But Eclipse is quite good (If
I have a high performance machine)

9

A. Self Introduction (cont.)

 Software
• Rava: A JavaVM in Ruby

• My best joke software

• Rucheme: A Scheme interpreter in Ruby
• Compile to instruction set which I designed
• I like Scheme

• Nadoka: IRC Client Server software
• IRC proxy/bouncer
• Ruby’s killer application (… nobody else may agree)

10

A. Self Introduction (cont.)

 Home page
• http://www.namikilab.tuat.ac.jp/~sasada/
• Of course in Japanese :)

 Organize polls on many topics

11

Q. Why do you make YARV?
A. Project Background

 Ruby - Object Oriented Scripting Language
• Very easy to use, but still powerful
• Used world-wide
• From Japan (to make my sponsor (officials) happy)

 But… Current Ruby interpreter is slow
• Traverse Abstract Syntax Tree in runtime
• Some projects chose other languages (e.g. Java)

because Ruby was just too slow for them
• And everyone says “Ruby? Ah, slow language” (myth)

12

A. Project Background (cont.)

 Bytecode Interpreter seems to be good
• Like Lisp, Java, .Net, Smalltalk, …

 Existing bytecode interpreter for ruby
→ Not enough
• Matz’ try → incomplete
• ByteCodeRuby (Mr. Marrows) → Slow (old info?)
• And other incomplete interpreters

13

Q. What is YARV?
A. Project overview

 Creating a Ruby VM
 Funded by “Exploratory Software

Development” – “Exploratory youth”
• 未踏ソフトウェア創造事業 – 未踏ユース

• By IPA – Information-technology Promotion
Agency, Japan.

• Another Ruby Project is accepted in this year
• Ruby Compiler for .Net by Mr. Asakawa

14

A. Project overview (cont.)

 VM Instruction (insn.) set “design”
 Compiler design and implementation(impl.)
 VM design and impl.
 JIT (Just In Time) and AOT (Ahead Of Time)

compiler design and impl.
 Will be published as Open Source Software
 http://www.atdot.net/yarv/

15

A. Project overview (cont.)

Ruby Script

Compiler Ruby Instruction
Sequence

AOT Compiler

C Source code C Compiler Executable
Shared Library

Ruby VM

(Evaluator)JIT Compiler

Native Code

YARV – The Proposed System

16

Q. What’s the goal of YARV?
A. Goal of YARV

 To be Rite
• If YARV accomplished (Matz promised)

 To be ‘the Fastest RubyVM in the world’
• Now, rival is only current ruby interpreter :)

 To enable all Ruby features
• Very important for claiming “RubyVM” name
• It’s easy to make “Ruby Subset VM”
• … but is it really Ruby?

17

Q. How to pronounce “YARV”?
A. I say like that, but…

 “Name is important” (Matz)
 But “YARV” name is not important
 Because “YARV” will become “Rite”

… if this project succeed
 If failed, no one remember “YARV”
 You can call “YARV” at your pleasure

18

Q. How to implement YARV?
A. Development Policy
 Simple stack machine
 YARV Implemented as Ruby C Extension
 Not “Bytecode” but “Wordcode”

• Easy to access from Processor
 Use Ruby’s existing Infrastructure

• GC
• Ruby Script parser
• Ruby API is very useful in C programming

• i.e) Memory Management
• using Array without “free()” is very happy

19

A. Development Policy
 Compiler parse Ruby’s AST

• Ruby Script Parser creates Node tree
• Traverse this tree and translate to YARV

instructions (insns)
• This compiler is written in C

Ruby Script

Compiler
（Node – Insns) Ruby insn.

Sequence

Ruby Parser
（Ruby – Node)

Ruby Abstract
Syntax Tree

Compiler with Ruby Parser

20

Q. How to implement YARV?(2)
A. Implementation - Registers

 5 registers
• PC: Program Counter
• SP: Stack Pointer
• LFP: Local Frame Pointer
• DFP: Dynamic Frame Pointer
• CFP: Control Frame Pointer

21

A. Implementation - Frames

 Frame types
• Method Frame
• Block Frame
• Class Frame

 Save environment to stack

22

A. Implementation - Frames
(.cont)

 Method Frame
• Same as other VMs
• Identical to Class Frame

 Control frame
• Every frame has this
• Includes “self”,

instruction sequence information,

continuation(keep last regs)
• CFP[0] == self

Stack

Control

Args
Locals

…

LFP, DFP

SP

Environment

CFP
Self

ISeq

Cont.

Block

23

A. Implementation - Frames (cont.)

 Block Frame
• Created when ‘yield’
• LFP points to method

local environment
• DFP point to current

environment
• DFP[0] point to previous

environment

Stack

Ctrl

LFP
Args

Locals

…

Prev Env

Ctrl

Args
Locals

…

CFP

SP
Ctrl

Args
Locals

…

Prev EnvBlock

DFP

24

A. Implementation - Proc

 Creating Proc Object
• Proc enables indefinite extent

• Moving environment to heap

• LFP and DFP point
env. in heap

Stack

Ctrl

Args
Locals

…

Block

Proc

Env.

Env.

Env.

Proc sample
def m arg; x = 0
 iter{|a| i=1
 iter{|b| j=2
 Proc.new
 }}; end

LFP

DFP

CFP

SP
Struct ProcObject:
 VALUE self;
 VALUE *lfp;
 VALUE *dfp
 VALUE iseqobj;

25

A. Implementation - Block

 Blocks are pushed on stack
• A Block body is allocated by

area allocation like “alloca()”
• Used by ‘yield’ insn.

Stack

Ctrl

Args
Locals

…

Block

Blcok
Info

Struct
BlockObject:
 VALUE self;
 VALUE *lfp;
 VALUE *dfp
 VALUE iseqobj;

Block sample
iter{
 ...
}

26

A. Implementation - Block (Proc)

 Procs are pushed on stack
• Used by ‘yield’ insn.
• Same data structure as Proc
• Can treat as Block object

Stack

Ctrl

Args
Locals

…

Block

Proc sample
def m arg; x = 0
 iter{|a| i=1
 iter{|b| j=2
 Proc.new
 }}; end

Proc

Env.

Env.

Env.

cont.

iter(m(arg))

27

A. Implementation
Exception / Jump

 Use exception table to handle
• Like JavaVM
• Types of entries

• Rescue clause
• Ensure clause
• Retry point

• Each entry have
• PC range
• Continuation PC and SP

 If jump occurred, rewind stack and check this table

28

 Different from Java and other ordinary VM
• Must manage continuation SP register

A. Implementation
Exception / Jump (cont.)

Java can do this?
V = 1 + begin
 FOO
 rescue
 BAR
 ensure
 BAZ
 end

29

A. Implementation - Ensure

 If no error/jump occurred, ensure is done
by normal instruction flow (copied / like
recent Java compiler)

sample
begin
 A
ensure
 B
end

Compiled:
 Start_A:
 A
 End_A:
 B
 End_B:
 end

ExceptionTable:
entry:
 type: ensure
 range: Start_A – End_A
 do: B
 restart point: End_B
 restart sp: 0

30

Q. What Insn does YARV has?
A. Insn Category List
 Insn names are not abbreviated
 Stack control

• Swap, dup, …
 Accessor

• get/setlocal, get/setconstant, …
 Put something

• putobject, putnil, putarray, …
 Apply some change to object

• concatstrings, …

31

A. Insn Category Lists
 Method definition

• methoddef
 Method call, Class/Module def

• send, classdef, moduledef, yield, super, …
 Control flow

• goto, if, unless, throw
 Optimization

• get/setinlinecache, opt_plus, opt_…, …
 And others

32

Q. How to write each insn?
A. Insn Description Language
 Instruction Description Language

• Body is written in C
• Declare variables

• Operands
• Values popped from or pushed to the stack

• Parsed by Ruby
• This scheme enables flexible VM creation

• Apply some optimization techs
• Insert debug print
• Make document automatically (similar to rdoc)

33

A. Insn Description Language
(cont.)
/**
 @c put
 @e put self.
 @j self を置く。
 */
DEFINE_INSN
putself
()
()
(VALUE val)
{
 val = GET_SELF();
}

34

A. Insn Description Language
(cont.)
/**
 @c variable
 @e get local variable(which is pointed by idx).
 @j idx で指定されたローカル変数をスタックに置く。
 */
DEFINE_INSN
getlocal
(ulong idx)
()
(VALUE val)
{
 val = *(GET_LFP() - idx);
}

35

Q. Does YARV have optimizer?
A. YARV Optimization Tech.
 Inline cache

• Global “VM state version” counter
• It’s incremented when some side-effect change

• (Re)Definition of Constant
• (Re)Definition of Method

• Cache some values with this count
• If kept counter equals current counter you can

use cached value
• This scheme is used by Constant access and

method search

36

A. YARV Optimization Tech.
(cont.)

 Inline cache (cont.)
• Constant access needs some insns

• A::B::C needs 4 insns
• With this inline cache, this can be shortened to 1 insn

• Method search
• Current using Global method cache (which works

wells)
• Inline caching: planned (to be measured first)

37

 Stack caching
• 2 level stack caching
• Cache 2 stack top values
• With insn description, this can be automated

 Direct threaded code
• Using GCC feature (label as value)

A. YARV Optimization Tech.
(cont.)

38

 Super instructions
• Merge two (or more) insns to one insn
• Replace frequent insn sequence with super insn.

 Make Special instruction
• putobject true → puttrue
• 1 + 1 → put 1; put 1; opt_plus

 These techs are very effective because:
• give C compiler more opportunity for optimization

 I want to do these automatically from
statistics data, but difficult?

A. YARV Optimization Tech.
(cont.)

39

 JIT compile
• I’m searching for an easy way

• Using existing libraries
• Using copy code technique

• Compile in C, and copy with label information

• Seems to need much more effort

A. YARV Optimization Tech.
(cont.)

40

 AOT compile
• Substitute insn to C implementation code and

compile it with C compiler
• Description language will helps
• Easy. Can rely on powerful C optimizer
• Output will be normal C extension method
• Very very simple experiment shows x100

speedup

A. YARV Optimization Tech.
(cont.)

41

Q. Is YARV working now?
A. Current Status
 Variables

• Method local, block local, global, instance, Constants,
…

 Class/Module definition
 Control flow

• if/unless, while/until, case/when
• begin/rescue/ensure, return, break/retry/next/redo

 Method invocation and yield block
• Call and yield with arguments, optional/rest arguments
• Call with block

42

Q. Current limitations on YARV?
A. Many

 Can’t call Ruby from C
• It mean that “10000.times{ … }” doesn’t work
• To enable that, I must patch ruby/eval.c

 Missing some useful Ruby features
• Stack trace, set_trace_func, method_missing
• Proc as method visibility check, creating Proc object, …
• And many many schemes :-P

43

Q. How fast will YARV run?
A. Benchmark result

 Everyone loves benchmarking!
• Of course, me too!
• and Everyone will love the result!

 (omitted)
• Try on your machine 

44

Q. Why Original System?
A. Comparison to other systems

 v.s. JavaVM, .Net, Squeak, …
• They have very nice library and optimizer
• Just a mapping of Ruby Specification to VM’s

own models
• Trade off between optimizer and Ruby stub
• Is it fun?

 v.s. Parrot
• Register model VM really fast in “Interpreter”?
• Is it fun?

45

Q. Schedule of YARV?
A. Schedule
 2004

• - Oct: implement basic feature of Ruby
• Aug. 30, 31 meeting with Matz
• Oct. 1-3 RubyConf 2004
• - Nov: implement JIT compiler
• - Dec: implement AOT compiler

 2005
• Debug debug debug!
• - Mar: finish the fund
• -?: Rite release

46

Q. What are the rest tasks?
A. Future Work

 Implement complete Ruby Specification
 Implement Optimizers

• JIT/AOT compiler, other interesting optimize tech.
 Collect benchmark program

• Do you have any program for it?
 Some other features

• Marshaling YARV instruction sequence, …
 Implement other dynamic language on YARV

• Scheme, ECMA Script, …, Python, Perl 6? 

47

Q. How to join YARV
development?
A. YARV Development community

 Home page
• http://www.atdot.net/yarv/
• Install instructions and some information

 Mailing list
• Yarv-dev (in Japanese)
• Yarv-devel (in English) … no one using 

48

Q. Finished?
A. Yes.
 Thank you
 Special Thanks

• Alexander Kellett, Sanimir Agovic
• Ruby-talk, Yarv-dev subscriber
• Matz and other rubyists
• IPA (my sponsor)

 Any other questions? Please “Ask Ko1” 
SASADA Koichi

Ko1 at atdot dot net

